Welcome!

Containers Expo Blog Authors: Elizabeth White, Dana Gardner, Pat Romanski, Rishi Bhargava, John Basso

Related Topics: Containers Expo Blog, @CloudExpo

Containers Expo Blog: Article

Memory: The Real Data Center Bottleneck

Memory virtualization solves the key barrier to increasing the efficiency of existing network resources

CIOs and IT managers agree that memory is emerging as a critical resource constraint in the data center for both economic and operational reasons. Regardless of density, memory is not a shareable resource across the data center. In fact, new servers are often purchased to increase memory capacity, rather than to add compute power. While storage capacity and CPU performance have advanced geometrically over time, memory density and storage performance have not kept pace. Data center architects refresh servers every few years, over-provision memory and storage, and are forced to bear the costs of the associated space, power and management overhead. The result of this inefficiency has been high data center costs with marginal performance improvement.

Memory: Where Are We?
Business-critical applications demand high performance from all network resources to derive value out of the ever-increasing volume of data. Memory is one of the three key computing resources, along with CPU and storage, which determine overall data center performance. However, memory has lagged far behind the advances of both processors and storage in capacity, price, and performance ratios. While processor vendors assert that data centers are processor-bound and storage vendors imply that data centers are storage-bound, in many cases the true performance barrier is memory. To that end, both a major network vendor and a dominant server vendor have recently made announcements about dramatic increases in the memory footprint of servers to better support data center virtualization.

The major network vendor built their first-ever blade server with custom developed hardware to support a larger memory footprint (up to 384 GB) for one dual-processor blade. This is significantly larger than the 144 GB maximum that is typical in high-end systems. The dominant server vendor enables individual VMs to use more of the local system memory.

Industry Challenges
Memory constraints continue to impact application performance for a number of industries. For example, data for seismic processing of oil and gas extraction, flight and reservation information, or business analytics quickly add up to terabytes, much too large to fit in even large-scale (and expensive) local RAM. These growing data sets create huge performance slowdowns in applications where latency and throughput matter. Multi-core processors are underutilized, waiting for data they can't get fast enough. And, currently available solutions are inefficient and don't entirely solve the problem.

Latency, or the delay in delivering the initial piece of data, is critical to application performance in areas such as manufacturing, pharmaceuticals, energy, and capital markets. As an example, algorithmic traders can execute hundreds of thousands of trades per day. Twenty-five percent of securities trades are now algorithmic trades - trades initiated by computers in response to market conditions or trading in patterns and sequences that generate profits. These trades leverage trade execution speed to make money, and it's a race to performance. The fastest trading desks will profit most.

Alongside the significant impact of peak performance is the need for certified messaging. Trading data streams must be certified - reliably stored for record keeping and rollback. Current solutions to the trading message problem are difficult to integrate, expensive, and cannot meet the performance requirements of the algorithmic trading desk.

A leading vendor's message bus solution has transaction latencies in the millisecond range, and reaches maximum throughput at close to 5,000 transactions per second. This performance hampers algorithmic trading, and throughput is not enough to meet the peak trading volumes at the opening bell, closing bell, or during market-moving events.

Memory Virtualization - Breaking the Memory Barrier
The introduction of memory virtualization shatters a long-standing and tolerated assumption in data processing - that servers are restricted to the memory that is physically installed. Until now, the data center has been primarily focused on server virtualization and storage virtualization.

Memory virtualization is the key to overcoming physical memory limitations, a common bottleneck in information technology performance. This technology allows servers in the data center to share a common, aggregated pool of memory that lives between the application and operating system. Memory virtualization is logically decoupled from local physical machines and made available to any connected computer as a global network resource.

This technology dramatically changes the price and performance model of the data center by bringing the performance benefits of resource virtualization, while reducing infrastructure costs.

In addition, it eliminates the need for changes to applications in order to take advantage of the pool. This creates a very large memory resource that is much faster than local or networked storage.

Memory virtualization scales across commodity hardware, takes advantage of existing data center equipment, and is implemented without application changes to deliver unmatched transactional throughput. High-performance computing now exists in the enterprise data center on commodity equipment, reducing capital and operational costs.

Memory Virtualization in Action - Large Working Data Set Applications
Memory virtualization reduces hundreds to thousands of reads from storage or databases to one, by making frequently read data available in a cache of virtualized memory with microsecond access speeds. This decreases reliance on expensive load balancers and allows servers to perform optimally even with simple, inexpensive round-robin load balancing by linking into common file system calls or application-level API integration. Any server may contribute RAM into the cache by using a command-line interface or a configuration and management dashboard that sets up and controls the virtualized memory pool through a web-based user interface. Memory virtualization then uses native high-speed fabric integration to move data rapidly between servers.

For applications with large working data sets, larger than will fit in physical memory, such as those found in high-volume Internet, predictive analytics, HPC and oil and gas, memory virtualization brings faster results and improves end-user experiences. In capital markets, memory virtualization delivers the lowest trade execution latencies, includes certified messaging, and integrates simply as demanded in this competitive market.

The associated performance gains relative to traditional storage are huge. NWChem is a computational chemistry application typically deployed in an HPC environment. In a 4 node cluster with a 4 GB / node running NWChem, memory virtualization cut the test run time from 17 minutes down to 6 minutes 15 seconds with no additional hardware, simply by creating an 8 GB cache with 2 GB contributed from each node.

Alternatives Fall Short
Attempts to address these challenges include scaling out (adding servers), over-provisioning (adding more storage or memory than is needed), scaling up (adding memory to existing or larger servers), or even designing software around the current constraints.

Larger data centers draw more power and require more IT staff and maintenance. For example, a 16-server data center with 32 GB RAM/server costs $190,000 in capital and operational expense over two years. Scaling out that data center to 32 servers would double the cost to $375,000 (see Figure 1). Scaling up the servers to 64GB RAM/server would raise the cost to $279,000 (data center costs based on the cost of scaling up a 16-node cluster from 32GB to 64GB per server, and scaling out a 16-node cluster to 32-nodes, two years operational expense).

What does this investment buy you? You get more servers to work on the problem - but performance has not improved significantly because they aren't working together; each server is still working only with its own local memory. By trying to divide and conquer your data set, you've fragmented it. Like fragmented drives, fragmented data sets restrict the flow of data and force data to be replicated across the network. The overhead of drawing data into each server consumes resources that should be focused on one thing - application performance.

By sharing memory, data centers require less memory per server because they have access to a much larger pool of virtualized memory. Memory virtualization also enables fewer servers to accomplish the same level of application performance, meaning less rack space, power consumption, and management staff (see Figure 2).

Additional cache capacity can be added dynamically with no downtime, and application servers can easily connect to virtualized network memory to share and consume data at any time without re-provisioning.

High Availability features eliminate data loss when servers or networks go down by keeping multiple copies of data in the cache and employing persistent writes to comply with certified messaging standards.

In the storage area, SAN and NAS have decoupled storage from computing, but storage is not the place for the active working data set. Storage acceleration can only marginally improve application performance because it connects too far down the stack and is not application-aware (understands state). The millisecond latencies of storage requests are unacceptable bottlenecks for business and mission-critical applications.

In some cases, data center architects have turned to data grids in the search for performance. Data grids impose a high management overhead and performance load and tend to replicate the working data set, rather than truly share it. These solutions are difficult to integrate, debug, and optimize, and remain tightly coupled to your application, reducing flexibility. Architects who have implemented these solutions complain of the "black box" software to which they have tied their applications' performance and disappointing acceleration results.

Conclusion
Memory virtualization has solved the key barrier to increasing the efficiency of existing network resources in order to improve the performance of business-critical applications. This capability decouples the memory from its physical environment, making it a shared resource across the data center or cluster. Addressing today's IT performance challenges, virtualized memory enables new business computing scenarios by eliminating application bottlenecks associated with memory and data sharing. Currently available, memory virtualization is delivering optimized data center utilization, performance and reliability with minimum risk and immediate business results.

More Stories By Clive Cook

Clive Cook is CEO of RNA Networks, a leading provider of memory virtualization software that transforms server memory into a shared network resource. He has a track record of success building and leading technology businesses including VeriLAN and Elematics, and holds an MBA from the Ivey School of Business, University of Western Ontario.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
In addition to all the benefits, IoT is also bringing new kind of customer experience challenges - cars that unlock themselves, thermostats turning houses into saunas and baby video monitors broadcasting over the internet. This list can only increase because while IoT services should be intuitive and simple to use, the delivery ecosystem is a myriad of potential problems as IoT explodes complexity. So finding a performance issue is like finding the proverbial needle in the haystack.
The Internet of Things will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform. In his session at @ThingsExpo, Craig Sproule, CEO of Metavine, demonstrated how to move beyond today's coding paradigm and shared the must-have mindsets for removing complexity from the develo...
SYS-CON Events announced today that MangoApps will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. MangoApps provides modern company intranets and team collaboration software, allowing workers to stay connected and productive from anywhere in the world and from any device.
Basho Technologies has announced the latest release of Basho Riak TS, version 1.3. Riak TS is an enterprise-grade NoSQL database optimized for Internet of Things (IoT). The open source version enables developers to download the software for free and use it in production as well as make contributions to the code and develop applications around Riak TS. Enhancements to Riak TS make it quick, easy and cost-effective to spin up an instance to test new ideas and build IoT applications. In addition to...
The 19th International Cloud Expo has announced that its Call for Papers is open. Cloud Expo, to be held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, brings together Cloud Computing, Big Data, Internet of Things, DevOps, Digital Transformation, Microservices and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportuni...
"We've discovered that after shows 80% if leads that people get, 80% of the conversations end up on the show floor, meaning people forget about it, people forget who they talk to, people forget that there are actual business opportunities to be had here so we try to help out and keep the conversations going," explained Jeff Mesnik, Founder and President of ContentMX, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
“delaPlex Software provides software outsourcing services. We have a hybrid model where we have onshore developers and project managers that we can place anywhere in the U.S. or in Europe,” explained Manish Sachdeva, CEO at delaPlex Software, in this SYS-CON.tv interview at @ThingsExpo, held June 7-9, 2016, at the Javits Center in New York City, NY.
From wearable activity trackers to fantasy e-sports, data and technology are transforming the way athletes train for the game and fans engage with their teams. In his session at @ThingsExpo, will present key data findings from leading sports organizations San Francisco 49ers, Orlando Magic NBA team. By utilizing data analytics these sports orgs have recognized new revenue streams, doubled its fan base and streamlined costs at its stadiums. John Paul is the CEO and Founder of VenueNext. Prior ...
IoT is rapidly changing the way enterprises are using data to improve business decision-making. In order to derive business value, organizations must unlock insights from the data gathered and then act on these. In their session at @ThingsExpo, Eric Hoffman, Vice President at EastBanc Technologies, and Peter Shashkin, Head of Development Department at EastBanc Technologies, discussed how one organization leveraged IoT, cloud technology and data analysis to improve customer experiences and effi...
The Internet of Things will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform and how we integrate our thinking to solve complicated problems. In his session at 19th Cloud Expo, Craig Sproule, CEO of Metavine, will demonstrate how to move beyond today's coding paradigm ...
Internet of @ThingsExpo, taking place November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with the 19th International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world and ThingsExpo Silicon Valley Call for Papers is now open.
Big Data engines are powering a lot of service businesses right now. Data is collected from users from wearable technologies, web behaviors, purchase behavior as well as several arbitrary data points we’d never think of. The demand for faster and bigger engines to crunch and serve up the data to services is growing exponentially. You see a LOT of correlation between “Cloud” and “Big Data” but on Big Data and “Hybrid,” where hybrid hosting is the sanest approach to the Big Data Infrastructure pro...
A critical component of any IoT project is what to do with all the data being generated. This data needs to be captured, processed, structured, and stored in a way to facilitate different kinds of queries. Traditional data warehouse and analytical systems are mature technologies that can be used to handle certain kinds of queries, but they are not always well suited to many problems, particularly when there is a need for real-time insights.
"My role is working with customers, helping them go through this digital transformation. I spend a lot of time talking to banks, big industries, manufacturers working through how they are integrating and transforming their IT platforms and moving them forward," explained William Morrish, General Manager Product Sales at Interoute, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
With 15% of enterprises adopting a hybrid IT strategy, you need to set a plan to integrate hybrid cloud throughout your infrastructure. In his session at 18th Cloud Expo, Steven Dreher, Director of Solutions Architecture at Green House Data, discussed how to plan for shifting resource requirements, overcome challenges, and implement hybrid IT alongside your existing data center assets. Highlights included anticipating workload, cost and resource calculations, integrating services on both sides...
"We are a well-established player in the application life cycle management market and we also have a very strong version control product," stated Flint Brenton, CEO of CollabNet,, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
Unless your company can spend a lot of money on new technology, re-engineering your environment and hiring a comprehensive cybersecurity team, you will most likely move to the cloud or seek external service partnerships. In his session at 18th Cloud Expo, Darren Guccione, CEO of Keeper Security, revealed what you need to know when it comes to encryption in the cloud.
We're entering the post-smartphone era, where wearable gadgets from watches and fitness bands to glasses and health aids will power the next technological revolution. With mass adoption of wearable devices comes a new data ecosystem that must be protected. Wearables open new pathways that facilitate the tracking, sharing and storing of consumers’ personal health, location and daily activity data. Consumers have some idea of the data these devices capture, but most don’t realize how revealing and...
What are the successful IoT innovations from emerging markets? What are the unique challenges and opportunities from these markets? How did the constraints in connectivity among others lead to groundbreaking insights? In her session at @ThingsExpo, Carmen Feliciano, a Principal at AMDG, will answer all these questions and share how you can apply IoT best practices and frameworks from the emerging markets to your own business.
Ask someone to architect an Internet of Things (IoT) solution and you are guaranteed to see a reference to the cloud. This would lead you to believe that IoT requires the cloud to exist. However, there are many IoT use cases where the cloud is not feasible or desirable. In his session at @ThingsExpo, Dave McCarthy, Director of Products at Bsquare Corporation, will discuss the strategies that exist to extend intelligence directly to IoT devices and sensors, freeing them from the constraints of ...