Click here to close now.




















Welcome!

Containers Expo Blog Authors: Pat Romanski, Elizabeth White, VictorOps Blog, Georgiana Comsa, Jason Bloomberg

Related Topics: Containers Expo Blog, @CloudExpo

Containers Expo Blog: Article

Memory: The Real Data Center Bottleneck

Memory virtualization solves the key barrier to increasing the efficiency of existing network resources

CIOs and IT managers agree that memory is emerging as a critical resource constraint in the data center for both economic and operational reasons. Regardless of density, memory is not a shareable resource across the data center. In fact, new servers are often purchased to increase memory capacity, rather than to add compute power. While storage capacity and CPU performance have advanced geometrically over time, memory density and storage performance have not kept pace. Data center architects refresh servers every few years, over-provision memory and storage, and are forced to bear the costs of the associated space, power and management overhead. The result of this inefficiency has been high data center costs with marginal performance improvement.

Memory: Where Are We?
Business-critical applications demand high performance from all network resources to derive value out of the ever-increasing volume of data. Memory is one of the three key computing resources, along with CPU and storage, which determine overall data center performance. However, memory has lagged far behind the advances of both processors and storage in capacity, price, and performance ratios. While processor vendors assert that data centers are processor-bound and storage vendors imply that data centers are storage-bound, in many cases the true performance barrier is memory. To that end, both a major network vendor and a dominant server vendor have recently made announcements about dramatic increases in the memory footprint of servers to better support data center virtualization.

The major network vendor built their first-ever blade server with custom developed hardware to support a larger memory footprint (up to 384 GB) for one dual-processor blade. This is significantly larger than the 144 GB maximum that is typical in high-end systems. The dominant server vendor enables individual VMs to use more of the local system memory.

Industry Challenges
Memory constraints continue to impact application performance for a number of industries. For example, data for seismic processing of oil and gas extraction, flight and reservation information, or business analytics quickly add up to terabytes, much too large to fit in even large-scale (and expensive) local RAM. These growing data sets create huge performance slowdowns in applications where latency and throughput matter. Multi-core processors are underutilized, waiting for data they can't get fast enough. And, currently available solutions are inefficient and don't entirely solve the problem.

Latency, or the delay in delivering the initial piece of data, is critical to application performance in areas such as manufacturing, pharmaceuticals, energy, and capital markets. As an example, algorithmic traders can execute hundreds of thousands of trades per day. Twenty-five percent of securities trades are now algorithmic trades - trades initiated by computers in response to market conditions or trading in patterns and sequences that generate profits. These trades leverage trade execution speed to make money, and it's a race to performance. The fastest trading desks will profit most.

Alongside the significant impact of peak performance is the need for certified messaging. Trading data streams must be certified - reliably stored for record keeping and rollback. Current solutions to the trading message problem are difficult to integrate, expensive, and cannot meet the performance requirements of the algorithmic trading desk.

A leading vendor's message bus solution has transaction latencies in the millisecond range, and reaches maximum throughput at close to 5,000 transactions per second. This performance hampers algorithmic trading, and throughput is not enough to meet the peak trading volumes at the opening bell, closing bell, or during market-moving events.

Memory Virtualization - Breaking the Memory Barrier
The introduction of memory virtualization shatters a long-standing and tolerated assumption in data processing - that servers are restricted to the memory that is physically installed. Until now, the data center has been primarily focused on server virtualization and storage virtualization.

Memory virtualization is the key to overcoming physical memory limitations, a common bottleneck in information technology performance. This technology allows servers in the data center to share a common, aggregated pool of memory that lives between the application and operating system. Memory virtualization is logically decoupled from local physical machines and made available to any connected computer as a global network resource.

This technology dramatically changes the price and performance model of the data center by bringing the performance benefits of resource virtualization, while reducing infrastructure costs.

In addition, it eliminates the need for changes to applications in order to take advantage of the pool. This creates a very large memory resource that is much faster than local or networked storage.

Memory virtualization scales across commodity hardware, takes advantage of existing data center equipment, and is implemented without application changes to deliver unmatched transactional throughput. High-performance computing now exists in the enterprise data center on commodity equipment, reducing capital and operational costs.

Memory Virtualization in Action - Large Working Data Set Applications
Memory virtualization reduces hundreds to thousands of reads from storage or databases to one, by making frequently read data available in a cache of virtualized memory with microsecond access speeds. This decreases reliance on expensive load balancers and allows servers to perform optimally even with simple, inexpensive round-robin load balancing by linking into common file system calls or application-level API integration. Any server may contribute RAM into the cache by using a command-line interface or a configuration and management dashboard that sets up and controls the virtualized memory pool through a web-based user interface. Memory virtualization then uses native high-speed fabric integration to move data rapidly between servers.

For applications with large working data sets, larger than will fit in physical memory, such as those found in high-volume Internet, predictive analytics, HPC and oil and gas, memory virtualization brings faster results and improves end-user experiences. In capital markets, memory virtualization delivers the lowest trade execution latencies, includes certified messaging, and integrates simply as demanded in this competitive market.

The associated performance gains relative to traditional storage are huge. NWChem is a computational chemistry application typically deployed in an HPC environment. In a 4 node cluster with a 4 GB / node running NWChem, memory virtualization cut the test run time from 17 minutes down to 6 minutes 15 seconds with no additional hardware, simply by creating an 8 GB cache with 2 GB contributed from each node.

Alternatives Fall Short
Attempts to address these challenges include scaling out (adding servers), over-provisioning (adding more storage or memory than is needed), scaling up (adding memory to existing or larger servers), or even designing software around the current constraints.

Larger data centers draw more power and require more IT staff and maintenance. For example, a 16-server data center with 32 GB RAM/server costs $190,000 in capital and operational expense over two years. Scaling out that data center to 32 servers would double the cost to $375,000 (see Figure 1). Scaling up the servers to 64GB RAM/server would raise the cost to $279,000 (data center costs based on the cost of scaling up a 16-node cluster from 32GB to 64GB per server, and scaling out a 16-node cluster to 32-nodes, two years operational expense).

What does this investment buy you? You get more servers to work on the problem - but performance has not improved significantly because they aren't working together; each server is still working only with its own local memory. By trying to divide and conquer your data set, you've fragmented it. Like fragmented drives, fragmented data sets restrict the flow of data and force data to be replicated across the network. The overhead of drawing data into each server consumes resources that should be focused on one thing - application performance.

By sharing memory, data centers require less memory per server because they have access to a much larger pool of virtualized memory. Memory virtualization also enables fewer servers to accomplish the same level of application performance, meaning less rack space, power consumption, and management staff (see Figure 2).

Additional cache capacity can be added dynamically with no downtime, and application servers can easily connect to virtualized network memory to share and consume data at any time without re-provisioning.

High Availability features eliminate data loss when servers or networks go down by keeping multiple copies of data in the cache and employing persistent writes to comply with certified messaging standards.

In the storage area, SAN and NAS have decoupled storage from computing, but storage is not the place for the active working data set. Storage acceleration can only marginally improve application performance because it connects too far down the stack and is not application-aware (understands state). The millisecond latencies of storage requests are unacceptable bottlenecks for business and mission-critical applications.

In some cases, data center architects have turned to data grids in the search for performance. Data grids impose a high management overhead and performance load and tend to replicate the working data set, rather than truly share it. These solutions are difficult to integrate, debug, and optimize, and remain tightly coupled to your application, reducing flexibility. Architects who have implemented these solutions complain of the "black box" software to which they have tied their applications' performance and disappointing acceleration results.

Conclusion
Memory virtualization has solved the key barrier to increasing the efficiency of existing network resources in order to improve the performance of business-critical applications. This capability decouples the memory from its physical environment, making it a shared resource across the data center or cluster. Addressing today's IT performance challenges, virtualized memory enables new business computing scenarios by eliminating application bottlenecks associated with memory and data sharing. Currently available, memory virtualization is delivering optimized data center utilization, performance and reliability with minimum risk and immediate business results.

More Stories By Clive Cook

Clive Cook is CEO of RNA Networks, a leading provider of memory virtualization software that transforms server memory into a shared network resource. He has a track record of success building and leading technology businesses including VeriLAN and Elematics, and holds an MBA from the Ivey School of Business, University of Western Ontario.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
WebRTC has had a real tough three or four years, and so have those working with it. Only a few short years ago, the development world were excited about WebRTC and proclaiming how awesome it was. You might have played with the technology a couple of years ago, only to find the extra infrastructure requirements were painful to implement and poorly documented. This probably left a bitter taste in your mouth, especially when things went wrong.
Too often with compelling new technologies market participants become overly enamored with that attractiveness of the technology and neglect underlying business drivers. This tendency, what some call the “newest shiny object syndrome,” is understandable given that virtually all of us are heavily engaged in technology. But it is also mistaken. Without concrete business cases driving its deployment, IoT, like many other technologies before it, will fade into obscurity.
The Internet of Things is in the early stages of mainstream deployment but it promises to unlock value and rapidly transform how organizations manage, operationalize, and monetize their assets. IoT is a complex structure of hardware, sensors, applications, analytics and devices that need to be able to communicate geographically and across all functions. Once the data is collected from numerous endpoints, the challenge then becomes converting it into actionable insight.
Consumer IoT applications provide data about the user that just doesn’t exist in traditional PC or mobile web applications. This rich data, or “context,” enables the highly personalized consumer experiences that characterize many consumer IoT apps. This same data is also providing brands with unprecedented insight into how their connected products are being used, while, at the same time, powering highly targeted engagement and marketing opportunities. In his session at @ThingsExpo, Nathan Treloar, President and COO of Bebaio, will explore examples of brands transforming their businesses by t...
With the Apple Watch making its way onto wrists all over the world, it’s only a matter of time before it becomes a staple in the workplace. In fact, Forrester reported that 68 percent of technology and business decision-makers characterize wearables as a top priority for 2015. Recognizing their business value early on, FinancialForce.com was the first to bring ERP to wearables, helping streamline communication across front and back office functions. In his session at @ThingsExpo, Kevin Roberts, GM of Platform at FinancialForce.com, will discuss the value of business applications on wearable ...
While many app developers are comfortable building apps for the smartphone, there is a whole new world out there. In his session at @ThingsExpo, Narayan Sainaney, Co-founder and CTO of Mojio, will discuss how the business case for connected car apps is growing and, with open platform companies having already done the heavy lifting, there really is no barrier to entry.
With the proliferation of connected devices underpinning new Internet of Things systems, Brandon Schulz, Director of Luxoft IoT – Retail, will be looking at the transformation of the retail customer experience in brick and mortar stores in his session at @ThingsExpo. Questions he will address include: Will beacons drop to the wayside like QR codes, or be a proximity-based profit driver? How will the customer experience change in stores of all types when everything can be instrumented and analyzed? As an area of investment, how might a retail company move towards an innovation methodolo...
The Internet of Things (IoT) is about the digitization of physical assets including sensors, devices, machines, gateways, and the network. It creates possibilities for significant value creation and new revenue generating business models via data democratization and ubiquitous analytics across IoT networks. The explosion of data in all forms in IoT requires a more robust and broader lens in order to enable smarter timely actions and better outcomes. Business operations become the key driver of IoT applications and projects. Business operations, IT, and data scientists need advanced analytics t...
Contrary to mainstream media attention, the multiple possibilities of how consumer IoT will transform our everyday lives aren’t the only angle of this headline-gaining trend. There’s a huge opportunity for “industrial IoT” and “Smart Cities” to impact the world in the same capacity – especially during critical situations. For example, a community water dam that needs to release water can leverage embedded critical communications logic to alert the appropriate individuals, on the right device, as soon as they are needed to take action.
SYS-CON Events announced today that HPM Networks will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. For 20 years, HPM Networks has been integrating technology solutions that solve complex business challenges. HPM Networks has designed solutions for both SMB and enterprise customers throughout the San Francisco Bay Area.
SYS-CON Events announced today that Micron Technology, Inc., a global leader in advanced semiconductor systems, will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Micron’s broad portfolio of high-performance memory technologies – including DRAM, NAND and NOR Flash – is the basis for solid state drives, modules, multichip packages and other system solutions. Backed by more than 35 years of technology leadership, Micron's memory solutions enable the world's most innovative computing, consumer,...
As more intelligent IoT applications shift into gear, they’re merging into the ever-increasing traffic flow of the Internet. It won’t be long before we experience bottlenecks, as IoT traffic peaks during rush hours. Organizations that are unprepared will find themselves by the side of the road unable to cross back into the fast lane. As billions of new devices begin to communicate and exchange data – will your infrastructure be scalable enough to handle this new interconnected world?
Through WebRTC, audio and video communications are being embedded more easily than ever into applications, helping carriers, enterprises and independent software vendors deliver greater functionality to their end users. With today’s business world increasingly focused on outcomes, users’ growing calls for ease of use, and businesses craving smarter, tighter integration, what’s the next step in delivering a richer, more immersive experience? That richer, more fully integrated experience comes about through a Communications Platform as a Service which allows for messaging, screen sharing, video...
SYS-CON Events announced today that Pythian, a global IT services company specializing in helping companies leverage disruptive technologies to optimize revenue-generating systems, has been named “Bronze Sponsor” of SYS-CON's 17th Cloud Expo, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Founded in 1997, Pythian is a global IT services company that helps companies compete by adopting disruptive technologies such as cloud, Big Data, advanced analytics, and DevOps to advance innovation and increase agility. Specializing in designing, imple...
In his session at @ThingsExpo, Lee Williams, a producer of the first smartphones and tablets, will talk about how he is now applying his experience in mobile technology to the design and development of the next generation of Environmental and Sustainability Services at ETwater. He will explain how M2M controllers work through wirelessly connected remote controls; and specifically delve into a retrofit option that reverse-engineers control codes of existing conventional controller systems so they don't have to be replaced and are instantly converted to become smart, connected devices.
SYS-CON Events announced today that IceWarp will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. IceWarp, the leader of cloud and on-premise messaging, delivers secured email, chat, documents, conferencing and collaboration to today's mobile workforce, all in one unified interface
As more and more data is generated from a variety of connected devices, the need to get insights from this data and predict future behavior and trends is increasingly essential for businesses. Real-time stream processing is needed in a variety of different industries such as Manufacturing, Oil and Gas, Automobile, Finance, Online Retail, Smart Grids, and Healthcare. Azure Stream Analytics is a fully managed distributed stream computation service that provides low latency, scalable processing of streaming data in the cloud with an enterprise grade SLA. It features built-in integration with Azur...
Akana has announced the availability of the new Akana Healthcare Solution. The API-driven solution helps healthcare organizations accelerate their transition to being secure, digitally interoperable businesses. It leverages the Health Level Seven International Fast Healthcare Interoperability Resources (HL7 FHIR) standard to enable broader business use of medical data. Akana developed the Healthcare Solution in response to healthcare businesses that want to increase electronic, multi-device access to health records while reducing operating costs and complying with government regulations.
For IoT to grow as quickly as analyst firms’ project, a lot is going to fall on developers to quickly bring applications to market. But the lack of a standard development platform threatens to slow growth and make application development more time consuming and costly, much like we’ve seen in the mobile space. In his session at @ThingsExpo, Mike Weiner, Product Manager of the Omega DevCloud with KORE Telematics Inc., discussed the evolving requirements for developers as IoT matures and conducted a live demonstration of how quickly application development can happen when the need to comply wit...
The Internet of Everything (IoE) brings together people, process, data and things to make networked connections more relevant and valuable than ever before – transforming information into knowledge and knowledge into wisdom. IoE creates new capabilities, richer experiences, and unprecedented opportunities to improve business and government operations, decision making and mission support capabilities.