Welcome!

Virtualization Authors: Carmen Gonzalez, Peter Dyer, Elizabeth White, Pat Romanski, Nitin Bandugula

Related Topics: Virtualization, Cloud Expo

Virtualization: Article

Memory: The Real Data Center Bottleneck

Memory virtualization solves the key barrier to increasing the efficiency of existing network resources

CIOs and IT managers agree that memory is emerging as a critical resource constraint in the data center for both economic and operational reasons. Regardless of density, memory is not a shareable resource across the data center. In fact, new servers are often purchased to increase memory capacity, rather than to add compute power. While storage capacity and CPU performance have advanced geometrically over time, memory density and storage performance have not kept pace. Data center architects refresh servers every few years, over-provision memory and storage, and are forced to bear the costs of the associated space, power and management overhead. The result of this inefficiency has been high data center costs with marginal performance improvement.

Memory: Where Are We?
Business-critical applications demand high performance from all network resources to derive value out of the ever-increasing volume of data. Memory is one of the three key computing resources, along with CPU and storage, which determine overall data center performance. However, memory has lagged far behind the advances of both processors and storage in capacity, price, and performance ratios. While processor vendors assert that data centers are processor-bound and storage vendors imply that data centers are storage-bound, in many cases the true performance barrier is memory. To that end, both a major network vendor and a dominant server vendor have recently made announcements about dramatic increases in the memory footprint of servers to better support data center virtualization.

The major network vendor built their first-ever blade server with custom developed hardware to support a larger memory footprint (up to 384 GB) for one dual-processor blade. This is significantly larger than the 144 GB maximum that is typical in high-end systems. The dominant server vendor enables individual VMs to use more of the local system memory.

Industry Challenges
Memory constraints continue to impact application performance for a number of industries. For example, data for seismic processing of oil and gas extraction, flight and reservation information, or business analytics quickly add up to terabytes, much too large to fit in even large-scale (and expensive) local RAM. These growing data sets create huge performance slowdowns in applications where latency and throughput matter. Multi-core processors are underutilized, waiting for data they can't get fast enough. And, currently available solutions are inefficient and don't entirely solve the problem.

Latency, or the delay in delivering the initial piece of data, is critical to application performance in areas such as manufacturing, pharmaceuticals, energy, and capital markets. As an example, algorithmic traders can execute hundreds of thousands of trades per day. Twenty-five percent of securities trades are now algorithmic trades - trades initiated by computers in response to market conditions or trading in patterns and sequences that generate profits. These trades leverage trade execution speed to make money, and it's a race to performance. The fastest trading desks will profit most.

Alongside the significant impact of peak performance is the need for certified messaging. Trading data streams must be certified - reliably stored for record keeping and rollback. Current solutions to the trading message problem are difficult to integrate, expensive, and cannot meet the performance requirements of the algorithmic trading desk.

A leading vendor's message bus solution has transaction latencies in the millisecond range, and reaches maximum throughput at close to 5,000 transactions per second. This performance hampers algorithmic trading, and throughput is not enough to meet the peak trading volumes at the opening bell, closing bell, or during market-moving events.

Memory Virtualization - Breaking the Memory Barrier
The introduction of memory virtualization shatters a long-standing and tolerated assumption in data processing - that servers are restricted to the memory that is physically installed. Until now, the data center has been primarily focused on server virtualization and storage virtualization.

Memory virtualization is the key to overcoming physical memory limitations, a common bottleneck in information technology performance. This technology allows servers in the data center to share a common, aggregated pool of memory that lives between the application and operating system. Memory virtualization is logically decoupled from local physical machines and made available to any connected computer as a global network resource.

This technology dramatically changes the price and performance model of the data center by bringing the performance benefits of resource virtualization, while reducing infrastructure costs.

In addition, it eliminates the need for changes to applications in order to take advantage of the pool. This creates a very large memory resource that is much faster than local or networked storage.

Memory virtualization scales across commodity hardware, takes advantage of existing data center equipment, and is implemented without application changes to deliver unmatched transactional throughput. High-performance computing now exists in the enterprise data center on commodity equipment, reducing capital and operational costs.

Memory Virtualization in Action - Large Working Data Set Applications
Memory virtualization reduces hundreds to thousands of reads from storage or databases to one, by making frequently read data available in a cache of virtualized memory with microsecond access speeds. This decreases reliance on expensive load balancers and allows servers to perform optimally even with simple, inexpensive round-robin load balancing by linking into common file system calls or application-level API integration. Any server may contribute RAM into the cache by using a command-line interface or a configuration and management dashboard that sets up and controls the virtualized memory pool through a web-based user interface. Memory virtualization then uses native high-speed fabric integration to move data rapidly between servers.

For applications with large working data sets, larger than will fit in physical memory, such as those found in high-volume Internet, predictive analytics, HPC and oil and gas, memory virtualization brings faster results and improves end-user experiences. In capital markets, memory virtualization delivers the lowest trade execution latencies, includes certified messaging, and integrates simply as demanded in this competitive market.

The associated performance gains relative to traditional storage are huge. NWChem is a computational chemistry application typically deployed in an HPC environment. In a 4 node cluster with a 4 GB / node running NWChem, memory virtualization cut the test run time from 17 minutes down to 6 minutes 15 seconds with no additional hardware, simply by creating an 8 GB cache with 2 GB contributed from each node.

Alternatives Fall Short
Attempts to address these challenges include scaling out (adding servers), over-provisioning (adding more storage or memory than is needed), scaling up (adding memory to existing or larger servers), or even designing software around the current constraints.

Larger data centers draw more power and require more IT staff and maintenance. For example, a 16-server data center with 32 GB RAM/server costs $190,000 in capital and operational expense over two years. Scaling out that data center to 32 servers would double the cost to $375,000 (see Figure 1). Scaling up the servers to 64GB RAM/server would raise the cost to $279,000 (data center costs based on the cost of scaling up a 16-node cluster from 32GB to 64GB per server, and scaling out a 16-node cluster to 32-nodes, two years operational expense).

What does this investment buy you? You get more servers to work on the problem - but performance has not improved significantly because they aren't working together; each server is still working only with its own local memory. By trying to divide and conquer your data set, you've fragmented it. Like fragmented drives, fragmented data sets restrict the flow of data and force data to be replicated across the network. The overhead of drawing data into each server consumes resources that should be focused on one thing - application performance.

By sharing memory, data centers require less memory per server because they have access to a much larger pool of virtualized memory. Memory virtualization also enables fewer servers to accomplish the same level of application performance, meaning less rack space, power consumption, and management staff (see Figure 2).

Additional cache capacity can be added dynamically with no downtime, and application servers can easily connect to virtualized network memory to share and consume data at any time without re-provisioning.

High Availability features eliminate data loss when servers or networks go down by keeping multiple copies of data in the cache and employing persistent writes to comply with certified messaging standards.

In the storage area, SAN and NAS have decoupled storage from computing, but storage is not the place for the active working data set. Storage acceleration can only marginally improve application performance because it connects too far down the stack and is not application-aware (understands state). The millisecond latencies of storage requests are unacceptable bottlenecks for business and mission-critical applications.

In some cases, data center architects have turned to data grids in the search for performance. Data grids impose a high management overhead and performance load and tend to replicate the working data set, rather than truly share it. These solutions are difficult to integrate, debug, and optimize, and remain tightly coupled to your application, reducing flexibility. Architects who have implemented these solutions complain of the "black box" software to which they have tied their applications' performance and disappointing acceleration results.

Conclusion
Memory virtualization has solved the key barrier to increasing the efficiency of existing network resources in order to improve the performance of business-critical applications. This capability decouples the memory from its physical environment, making it a shared resource across the data center or cluster. Addressing today's IT performance challenges, virtualized memory enables new business computing scenarios by eliminating application bottlenecks associated with memory and data sharing. Currently available, memory virtualization is delivering optimized data center utilization, performance and reliability with minimum risk and immediate business results.

More Stories By Clive Cook

Clive Cook is CEO of RNA Networks, a leading provider of memory virtualization software that transforms server memory into a shared network resource. He has a track record of success building and leading technology businesses including VeriLAN and Elematics, and holds an MBA from the Ivey School of Business, University of Western Ontario.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, data security and privacy.
Wearable devices have come of age. The primary applications of wearables so far have been "the Quantified Self" or the tracking of one's fitness and health status. We propose the evolution of wearables into social and emotional communication devices. Our BE(tm) sensor uses light to visualize the skin conductance response. Our sensors are very inexpensive and can be massively distributed to audiences or groups of any size, in order to gauge reactions to performances, video, or any kind of presentation. In her session at @ThingsExpo, Jocelyn Scheirer, CEO & Founder of Bionolux, will discuss ho...
DevOps Summit 2015 New York, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that it is now accepting Keynote Proposals. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development cycles that produce software that is obsolete at launch. DevOps may be disruptive, but it is essential.
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...

ARMONK, N.Y., Nov. 20, 2014 /PRNewswire/ --  IBM (NYSE: IBM) today announced that it is bringing a greater level of control, security and flexibility to cloud-based application development and delivery with a single-tenant version of Bluemix, IBM's platform-as-a-service. The new platform enables developers to build ap...

Building low-cost wearable devices can enhance the quality of our lives. In his session at Internet of @ThingsExpo, Sai Yamanoor, Embedded Software Engineer at Altschool, provided an example of putting together a small keychain within a $50 budget that educates the user about the air quality in their surroundings. He also provided examples such as building a wearable device that provides transit or recreational information. He then reviewed the resources available to build wearable devices at home including open source hardware, the raw materials required and the options available to power s...
The Internet of Things promises to transform businesses (and lives), but navigating the business and technical path to success can be difficult to understand. In his session at @ThingsExpo, Sean Lorenz, Technical Product Manager for Xively at LogMeIn, demonstrated how to approach creating broadly successful connected customer solutions using real world business transformation studies including New England BioLabs and more.
Since 2008 and for the first time in history, more than half of humans live in urban areas, urging cities to become “smart.” Today, cities can leverage the wide availability of smartphones combined with new technologies such as Beacons or NFC to connect their urban furniture and environment to create citizen-first services that improve transportation, way-finding and information delivery. In her session at @ThingsExpo, Laetitia Gazel-Anthoine, CEO of Connecthings, will focus on successful use cases.
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
The Internet of Things is a misnomer. That implies that everything is on the Internet, and that simply should not be - especially for things that are blurring the line between medical devices that stimulate like a pacemaker and quantified self-sensors like a pedometer or pulse tracker. The mesh of things that we manage must be segmented into zones of trust for sensing data, transmitting data, receiving command and control administrative changes, and peer-to-peer mesh messaging. In his session at @ThingsExpo, Ryan Bagnulo, Solution Architect / Software Engineer at SOA Software, focused on desi...
"For over 25 years we have been working with a lot of enterprise customers and we have seen how companies create applications. And now that we have moved to cloud computing, mobile, social and the Internet of Things, we see that the market needs a new way of creating applications," stated Jesse Shiah, CEO, President and Co-Founder of AgilePoint Inc., in this SYS-CON.tv interview at 15th Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
The industrial software market has treated data with the mentality of “collect everything now, worry about how to use it later.” We now find ourselves buried in data, with the pervasive connectivity of the (Industrial) Internet of Things only piling on more numbers. There’s too much data and not enough information. In his session at @ThingsExpo, Bob Gates, Global Marketing Director, GE’s Intelligent Platforms business, to discuss how realizing the power of IoT, software developers are now focused on understanding how industrial data can create intelligence for industrial operations. Imagine ...
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
There is no doubt that Big Data is here and getting bigger every day. Building a Big Data infrastructure today is no easy task. There are an enormous number of choices for database engines and technologies. To make things even more challenging, requirements are getting more sophisticated, and the standard paradigm of supporting historical analytics queries is often just one facet of what is needed. As Big Data growth continues, organizations are demanding real-time access to data, allowing immediate and actionable interpretation of events as they happen. Another aspect concerns how to deliver ...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.