Welcome!

Containers Expo Blog Authors: Elizabeth White, Pat Romanski, Liz McMillan, Anders Wallgren, Lori MacVittie

Related Topics: Containers Expo Blog, @CloudExpo

Containers Expo Blog: Article

Memory: The Real Data Center Bottleneck

Memory virtualization solves the key barrier to increasing the efficiency of existing network resources

CIOs and IT managers agree that memory is emerging as a critical resource constraint in the data center for both economic and operational reasons. Regardless of density, memory is not a shareable resource across the data center. In fact, new servers are often purchased to increase memory capacity, rather than to add compute power. While storage capacity and CPU performance have advanced geometrically over time, memory density and storage performance have not kept pace. Data center architects refresh servers every few years, over-provision memory and storage, and are forced to bear the costs of the associated space, power and management overhead. The result of this inefficiency has been high data center costs with marginal performance improvement.

Memory: Where Are We?
Business-critical applications demand high performance from all network resources to derive value out of the ever-increasing volume of data. Memory is one of the three key computing resources, along with CPU and storage, which determine overall data center performance. However, memory has lagged far behind the advances of both processors and storage in capacity, price, and performance ratios. While processor vendors assert that data centers are processor-bound and storage vendors imply that data centers are storage-bound, in many cases the true performance barrier is memory. To that end, both a major network vendor and a dominant server vendor have recently made announcements about dramatic increases in the memory footprint of servers to better support data center virtualization.

The major network vendor built their first-ever blade server with custom developed hardware to support a larger memory footprint (up to 384 GB) for one dual-processor blade. This is significantly larger than the 144 GB maximum that is typical in high-end systems. The dominant server vendor enables individual VMs to use more of the local system memory.

Industry Challenges
Memory constraints continue to impact application performance for a number of industries. For example, data for seismic processing of oil and gas extraction, flight and reservation information, or business analytics quickly add up to terabytes, much too large to fit in even large-scale (and expensive) local RAM. These growing data sets create huge performance slowdowns in applications where latency and throughput matter. Multi-core processors are underutilized, waiting for data they can't get fast enough. And, currently available solutions are inefficient and don't entirely solve the problem.

Latency, or the delay in delivering the initial piece of data, is critical to application performance in areas such as manufacturing, pharmaceuticals, energy, and capital markets. As an example, algorithmic traders can execute hundreds of thousands of trades per day. Twenty-five percent of securities trades are now algorithmic trades - trades initiated by computers in response to market conditions or trading in patterns and sequences that generate profits. These trades leverage trade execution speed to make money, and it's a race to performance. The fastest trading desks will profit most.

Alongside the significant impact of peak performance is the need for certified messaging. Trading data streams must be certified - reliably stored for record keeping and rollback. Current solutions to the trading message problem are difficult to integrate, expensive, and cannot meet the performance requirements of the algorithmic trading desk.

A leading vendor's message bus solution has transaction latencies in the millisecond range, and reaches maximum throughput at close to 5,000 transactions per second. This performance hampers algorithmic trading, and throughput is not enough to meet the peak trading volumes at the opening bell, closing bell, or during market-moving events.

Memory Virtualization - Breaking the Memory Barrier
The introduction of memory virtualization shatters a long-standing and tolerated assumption in data processing - that servers are restricted to the memory that is physically installed. Until now, the data center has been primarily focused on server virtualization and storage virtualization.

Memory virtualization is the key to overcoming physical memory limitations, a common bottleneck in information technology performance. This technology allows servers in the data center to share a common, aggregated pool of memory that lives between the application and operating system. Memory virtualization is logically decoupled from local physical machines and made available to any connected computer as a global network resource.

This technology dramatically changes the price and performance model of the data center by bringing the performance benefits of resource virtualization, while reducing infrastructure costs.

In addition, it eliminates the need for changes to applications in order to take advantage of the pool. This creates a very large memory resource that is much faster than local or networked storage.

Memory virtualization scales across commodity hardware, takes advantage of existing data center equipment, and is implemented without application changes to deliver unmatched transactional throughput. High-performance computing now exists in the enterprise data center on commodity equipment, reducing capital and operational costs.

Memory Virtualization in Action - Large Working Data Set Applications
Memory virtualization reduces hundreds to thousands of reads from storage or databases to one, by making frequently read data available in a cache of virtualized memory with microsecond access speeds. This decreases reliance on expensive load balancers and allows servers to perform optimally even with simple, inexpensive round-robin load balancing by linking into common file system calls or application-level API integration. Any server may contribute RAM into the cache by using a command-line interface or a configuration and management dashboard that sets up and controls the virtualized memory pool through a web-based user interface. Memory virtualization then uses native high-speed fabric integration to move data rapidly between servers.

For applications with large working data sets, larger than will fit in physical memory, such as those found in high-volume Internet, predictive analytics, HPC and oil and gas, memory virtualization brings faster results and improves end-user experiences. In capital markets, memory virtualization delivers the lowest trade execution latencies, includes certified messaging, and integrates simply as demanded in this competitive market.

The associated performance gains relative to traditional storage are huge. NWChem is a computational chemistry application typically deployed in an HPC environment. In a 4 node cluster with a 4 GB / node running NWChem, memory virtualization cut the test run time from 17 minutes down to 6 minutes 15 seconds with no additional hardware, simply by creating an 8 GB cache with 2 GB contributed from each node.

Alternatives Fall Short
Attempts to address these challenges include scaling out (adding servers), over-provisioning (adding more storage or memory than is needed), scaling up (adding memory to existing or larger servers), or even designing software around the current constraints.

Larger data centers draw more power and require more IT staff and maintenance. For example, a 16-server data center with 32 GB RAM/server costs $190,000 in capital and operational expense over two years. Scaling out that data center to 32 servers would double the cost to $375,000 (see Figure 1). Scaling up the servers to 64GB RAM/server would raise the cost to $279,000 (data center costs based on the cost of scaling up a 16-node cluster from 32GB to 64GB per server, and scaling out a 16-node cluster to 32-nodes, two years operational expense).

What does this investment buy you? You get more servers to work on the problem - but performance has not improved significantly because they aren't working together; each server is still working only with its own local memory. By trying to divide and conquer your data set, you've fragmented it. Like fragmented drives, fragmented data sets restrict the flow of data and force data to be replicated across the network. The overhead of drawing data into each server consumes resources that should be focused on one thing - application performance.

By sharing memory, data centers require less memory per server because they have access to a much larger pool of virtualized memory. Memory virtualization also enables fewer servers to accomplish the same level of application performance, meaning less rack space, power consumption, and management staff (see Figure 2).

Additional cache capacity can be added dynamically with no downtime, and application servers can easily connect to virtualized network memory to share and consume data at any time without re-provisioning.

High Availability features eliminate data loss when servers or networks go down by keeping multiple copies of data in the cache and employing persistent writes to comply with certified messaging standards.

In the storage area, SAN and NAS have decoupled storage from computing, but storage is not the place for the active working data set. Storage acceleration can only marginally improve application performance because it connects too far down the stack and is not application-aware (understands state). The millisecond latencies of storage requests are unacceptable bottlenecks for business and mission-critical applications.

In some cases, data center architects have turned to data grids in the search for performance. Data grids impose a high management overhead and performance load and tend to replicate the working data set, rather than truly share it. These solutions are difficult to integrate, debug, and optimize, and remain tightly coupled to your application, reducing flexibility. Architects who have implemented these solutions complain of the "black box" software to which they have tied their applications' performance and disappointing acceleration results.

Conclusion
Memory virtualization has solved the key barrier to increasing the efficiency of existing network resources in order to improve the performance of business-critical applications. This capability decouples the memory from its physical environment, making it a shared resource across the data center or cluster. Addressing today's IT performance challenges, virtualized memory enables new business computing scenarios by eliminating application bottlenecks associated with memory and data sharing. Currently available, memory virtualization is delivering optimized data center utilization, performance and reliability with minimum risk and immediate business results.

More Stories By Clive Cook

Clive Cook is CEO of RNA Networks, a leading provider of memory virtualization software that transforms server memory into a shared network resource. He has a track record of success building and leading technology businesses including VeriLAN and Elematics, and holds an MBA from the Ivey School of Business, University of Western Ontario.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life sett...
If you’re responsible for an application that depends on the data or functionality of various IoT endpoints – either sensors or devices – your brand reputation depends on the security, reliability, and compliance of its many integrated parts. If your application fails to deliver the expected business results, your customers and partners won't care if that failure stems from the code you developed or from a component that you integrated. What can you do to ensure that the endpoints work as expect...
The Transparent Cloud-computing Consortium (abbreviation: T-Cloud Consortium) will conduct research activities into changes in the computing model as a result of collaboration between "device" and "cloud" and the creation of new value and markets through organic data processing High speed and high quality networks, and dramatic improvements in computer processing capabilities, have greatly changed the nature of applications and made the storing and processing of data on the network commonplace.
SYS-CON Events announced today that ReadyTalk, a leading provider of online conferencing and webinar services, has been named Vendor Presentation Sponsor at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. ReadyTalk delivers audio and web conferencing services that inspire collaboration and enable the Future of Work for today’s increasingly digital and mobile workforce. By combining intuitive, innovative tec...
Cognitive Computing is becoming the foundation for a new generation of solutions that have the potential to transform business. Unlike traditional approaches to building solutions, a cognitive computing approach allows the data to help determine the way applications are designed. This contrasts with conventional software development that begins with defining logic based on the current way a business operates. In her session at 18th Cloud Expo, Judith S. Hurwitz, President and CEO of Hurwitz & ...
The vision of a connected smart home is becoming reality with the application of integrated wireless technologies in devices and appliances. The use of standardized and TCP/IP networked wireless technologies in line-powered and battery operated sensors and controls has led to the adoption of radios in the 2.4GHz band, including Wi-Fi, BT/BLE and 802.15.4 applied ZigBee and Thread. This is driving the need for robust wireless coexistence for multiple radios to ensure throughput performance and th...
Enterprise IT has been in the era of Hybrid Cloud for some time now. But it seems most conversations about Hybrid are focused on integrating AWS, Microsoft Azure, or Google ECM into existing on-premises systems. Where is all the Private Cloud? What do technology providers need to do to make their offerings more compelling? How should enterprise IT executives and buyers define their focus, needs, and roadmap, and communicate that clearly to the providers?
SYS-CON Events announced today that Commvault, a global leader in enterprise data protection and information management, has been named “Bronze Sponsor” of SYS-CON's 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Commvault is a leading provider of data protection and information management solutions, helping companies worldwide activate their data to drive more value and business insight and to transform moder...
Fifty billion connected devices and still no winning protocols standards. HTTP, WebSockets, MQTT, and CoAP seem to be leading in the IoT protocol race at the moment but many more protocols are getting introduced on a regular basis. Each protocol has its pros and cons depending on the nature of the communications. Does there really need to be only one protocol to rule them all? Of course not. In his session at @ThingsExpo, Chris Matthieu, co-founder and CTO of Octoblu, walk you through how Oct...
The Internet of Things can drive efficiency for airlines and airports. In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect with GE, and Sudip Majumder, senior director of development at Oracle, will discuss the technical details of the connected airline baggage and related social media solutions. These IoT applications will enhance travelers' journey experience and drive efficiency for the airlines and the airports. The session will include a working demo and a technical d...
There is little doubt that Big Data solutions will have an increasing role in the Enterprise IT mainstream over time. Big Data at Cloud Expo - to be held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA - has announced its Call for Papers is open. Cloud computing is being adopted in one form or another by 94% of enterprises today. Tens of billions of new devices are being connected to The Internet of Things. And Big Data is driving this bus. An exponential increase is...
Digital innovation is the next big wave of business transformation based on digital technologies of which IoT and Big Data are key components, For example: Business boundary innovation is a challenge to excavate third-party business value using IoT and BigData, like Nest Business structure innovation may propose re-building business structure from scratch, as Uber does in the taxicab industry The social model innovation is also a big challenge to the new social architecture with the design fr...
The many IoT deployments around the world are busy integrating smart devices and sensors into their enterprise IT infrastructures. Yet all of this technology – and there are an amazing number of choices – is of no use without the software to gather, communicate, and analyze the new data flows. Without software, there is no IT. In this power panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists will look at the protocols that communicate data and the emerging data analy...
DevOps at Cloud Expo, taking place Nov 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 19th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long dev...
SYS-CON Events announced today that China Unicom will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. China United Network Communications Group Co. Ltd ("China Unicom") was officially established in 2009 on the basis of the merger of former China Netcom and former China Unicom. China Unicom mainly operates a full range of telecommunications services including mobile broadband (GSM, WCDMA, LTE F...
Data is an unusual currency; it is not restricted by the same transactional limitations as money or people. In fact, the more that you leverage your data across multiple business use cases, the more valuable it becomes to the organization. And the same can be said about the organization’s analytics. In his session at 19th Cloud Expo, Bill Schmarzo, CTO for the Big Data Practice at EMC, will introduce a methodology for capturing, enriching and sharing data (and analytics) across the organizati...
SYS-CON Events announced today the Enterprise IoT Bootcamp, being held November 1-2, 2016, in conjunction with 19th Cloud Expo | @ThingsExpo at the Santa Clara Convention Center in Santa Clara, CA. Combined with real-world scenarios and use cases, the Enterprise IoT Bootcamp is not just based on presentations but with hands-on demos and detailed walkthroughs. We will introduce you to a variety of real world use cases prototyped using Arduino, Raspberry Pi, BeagleBone, Spark, and Intel Edison. Y...
Major trends and emerging technologies – from virtual reality and IoT, to Big Data and algorithms – are helping organizations innovate in the digital era. However, to create real business value, IT must think beyond the ‘what’ of digital transformation to the ‘how’ to harness emerging trends, innovation and disruption. Architecture is the key that underpins and ties all these efforts together. In the digital age, it’s important to invest in architecture, extend the enterprise footprint to the cl...
Video experiences should be unique and exciting! But that doesn’t mean you need to patch all the pieces yourself. Users demand rich and engaging experiences and new ways to connect with you. But creating robust video applications at scale can be complicated, time-consuming and expensive. In his session at @ThingsExpo, Zohar Babin, Vice President of Platform, Ecosystem and Community at Kaltura, will discuss how VPaaS enables you to move fast, creating scalable video experiences that reach your...
SYS-CON Events announced today that SoftLayer, an IBM Company, has been named “Gold Sponsor” of SYS-CON's 18th Cloud Expo, which will take place on June 7-9, 2016, at the Javits Center in New York, New York. SoftLayer, an IBM Company, provides cloud infrastructure as a service from a growing number of data centers and network points of presence around the world. SoftLayer’s customers range from Web startups to global enterprises.