Click here to close now.


Containers Expo Blog Authors: Pat Romanski, Elizabeth White, Ian Khan, Jason Bloomberg, Liz McMillan

Related Topics: Containers Expo Blog

Containers Expo Blog: Article

NoSQL and Data Virtualization - Soon to Be Best Friends

Big Data is increasing the popularity of NoSQL; the challenge - data integration

According to a recent McKinsey Big Data report , "The amount of data in our world has been exploding. Companies capture trillions of bytes of information about their customers, suppliers, and operations, and millions of networked sensors are being embedding in the physical world in devices such as mobile phones and automobiles, sensing, creating and communicating data."

NoSQL is increasingly being adopted with the expansion of “big data” use cases. The challenge to enterprises is to integrate disparate NoSQL systems, each with its unique and non-standard API, with their traditional enterprise data sources.

Today’s evolved data virtualization platforms provide access to information from almost any type of data store and therefore are inherently well-suited to integrate NoSQL data stores into the enterprise.

NoSQL and Data Virtualization Defined
NoSQL data stores manage data that is not strictly tabular and relational. Beyond being non-relational, NoSQL data stores are typically distributed, open-source, and horizontally scalable, although there are exceptions for specific NoSQL data stores.

Data virtualization, has over the past eight years expanded its adoption among enterprises and government agencies due to its ability to evolve rapidly and incorporate the latest IT innovations. Originally limited to relational sources and business intelligence (BI) consumers, data virtualization today supports a wide range of sources including multi-dimensional stores, Web and data services, XML documents, analytic appliances, on- and off-premises applications and more. NoSQL data stores are the newest source type supported by data virtualization.

The NoSQL Data Stores Landscape
Although the original emergence of NoSQL data stores was motivated by Web-scale data, the movement has grown to encompass a wide variety of data stores that do not use SQL as their primary processing language. NoSQL data stores can be categorized as:

-- Tabular/Columnar Data Stores: Storing sparse tabular data, these stores look most like traditional tabular databases. Examples include Hadoop/HBase (Yahoo!), BigTable (Google), Hypertable, and VoltDB.

-- Document Stores: These sources store unstructured (e.g., text) or semi-structured (e.g., XML) documents. Examples include MongoDB, Mark Logic, and CouchDB.

-- Graph Databases: These NoSQL sources store graph-oriented data with nodes, edges and properties, and are commonly used to store associations in social networks. Examples include Neo4J, AllegroGraph, and FlockDB.

-- Key/Value Stores: These sources store simple key/value pairs like a traditional hash table. They are further subdivided into in-memory and disk-based solutions. This category of NoSQL systems probably has the largest number of members, each embodying slightly different characteristics. Examples include Memcached, Cassandra (Facebook), SimpleDB, Dynamo (Amazon), Voldemort (LinkedIn), and Kyoto Cabinet.

-- Object and Multi-value Databases: These types of stores preceded the NoSQL movement but they have found new life as part of the movement. Object databases store objects (as in object-oriented programming). Multi-value databases store tabular data, but individual cells can store multiple values. Examples include Objectivity, GemStone, and Unidata.

-- Miscellaneous Sources: Several other data stores can be classified as NoSQL stores, although they don’t fit into any of the categories above. Examples include GT.M, IBM Lotus/Domino, and the ISIS family.

Virtualizing NoSQL Data Store Sources
Data virtualization platforms provide a complete toolset for accessing, federating, abstracting, and delivering information from diverse sources. Access is typically done via standards-based protocols and APIs; for example, JDBC and ODBC for SQL-based sources, HTTP and SOAP for Web services, JMS for messages, and APIs for enterprise and cloud-based applications. Through these methods, source data is securely exposed from a single virtual location, regardless of how and where it is physically stored.

Although NoSQL access standards have yet to develop fully, each implementation provides a Java-based development API appropriate for accessing that type of NoSQL data. Data virtualization platforms typically use these APIs to access and integrate data. Three kinds of NoSQL systems are particularly suited for the data virtualization platform: tabular/columnar data, XML documents, and key-value stores.

How to Integrate Tabular/Columnar Data Stores
Because data virtualization platforms were originally designed for tabular data, retrieving and processing data from this category is a natural fit. The preferred data retrieval paradigm for tabular/columnar data stores leverages “table functions” in the FROM clause of a SQL statement. That is, a procedure resource that returns a cursor can be dropped into the data virtualization development environment as a table, where it will show up in the FROM clause of the SQL statement.

Tabular/columnar NoSQL data sources typically store very large data sets. Table function implementations should ensure sufficient data reduction within the source by leveraging input parameters. Also, the processing of large data sets can take a long time, so some form of caching may be prudent to retain the results for reuse.

This approach provides full access to the data in the underlying NoSQL source, and it will likely be sufficient for most near-term needs. However, more generic filtering and aggregation might be possible with the underlying NoSQL source, and purpose-built table functions provide only a limited interface to the data virtualization platform. If a particular NoSQL tabular data store becomes quite popular, expect data virtualization platform providers to develop a custom adapter that more fully integrates and leverages that data source’s specific capabilities.

How to Integrate XML Document Stores
Because XML document store sources leverage XQuery as their preferred data retrieval paradigm, data virtualization platforms with embedded XQuery engines (and XML as a native data type) can easily retrieve and further process documents from this category of NoSQL data store.

For a specific NoSQL XML document store, a minimum of two custom procedures can be implemented that leverage the NoSQL system’s Java API. Both procedures would return an XML document that can be further manipulated by any of the upstream XML manipulation functionality (e.g., XSLT transformations). The first procedure takes a document handle (unique identifier) as its input argument and leverages the API to retrieve and return that document. The second procedure takes an XQuery specification as its input argument and leverages the API to execute the query and return the results as a single document. Of course, additional procedures accepting more specific parameters could also be implemented, making integration into multiple views easier.

How to Integrate Key/Value Stores
Data virtualization platforms can integrate key/value stores in two ways. The first is as a simple custom SQL function. This function can be created so that it takes the key as a parameter and returns the value. This common function can then be used in SQL statements throughout the data virtualization platform.

The second leverages an in-memory key/value store as a cache target. This approach is best for small data sets or procedure results; it doesn’t work very well for large tabular data sets. Further, this form of cache integration is often challenged by the impedance mismatch between cached tabular data and cached key/value data (the cached data is opaque inside the key/value store), so the entire set must be retrieved for processing.

Key Takeaways
Web analytics, predictive analytics, voice-of-the-customer, churn, fraud, sensor-tracking and other “big data” use cases are accelerating demand  for NoSQL data stores as well as for the integration of NoSQL data with enterprise data.  Data virtualization, a more modern and versatile approach to data integration, is proving a successful solution to this fast growing problem.

More Stories By Robert Eve

Robert Eve is the EVP of Marketing at Composite Software, the data virtualization gold standard and co-author of Data Virtualization: Going Beyond Traditional Data Integration to Achieve Business Agility. Bob's experience includes executive level roles at leading enterprise software companies such as Mercury Interactive, PeopleSoft, and Oracle. Bob holds a Masters of Science from the Massachusetts Institute of Technology and a Bachelor of Science from the University of California at Berkeley.

@ThingsExpo Stories
We all know that data growth is exploding and storage budgets are shrinking. Instead of showing you charts on about how much data there is, in his General Session at 17th Cloud Expo, Scott Cleland, Senior Director of Product Marketing at HGST, showed how to capture all of your data in one place. After you have your data under control, you can then analyze it in one place, saving time and resources.
The Internet of Things (IoT) is growing rapidly by extending current technologies, products and networks. By 2020, Cisco estimates there will be 50 billion connected devices. Gartner has forecast revenues of over $300 billion, just to IoT suppliers. Now is the time to figure out how you’ll make money – not just create innovative products. With hundreds of new products and companies jumping into the IoT fray every month, there’s no shortage of innovation. Despite this, McKinsey/VisionMobile data shows "less than 10 percent of IoT developers are making enough to support a reasonably sized team....
Just over a week ago I received a long and loud sustained applause for a presentation I delivered at this year’s Cloud Expo in Santa Clara. I was extremely pleased with the turnout and had some very good conversations with many of the attendees. Over the next few days I had many more meaningful conversations and was not only happy with the results but also learned a few new things. Here is everything I learned in those three days distilled into three short points.
DevOps is about increasing efficiency, but nothing is more inefficient than building the same application twice. However, this is a routine occurrence with enterprise applications that need both a rich desktop web interface and strong mobile support. With recent technological advances from Isomorphic Software and others, rich desktop and tuned mobile experiences can now be created with a single codebase – without compromising functionality, performance or usability. In his session at DevOps Summit, Charles Kendrick, CTO and Chief Architect at Isomorphic Software, demonstrated examples of com...
As organizations realize the scope of the Internet of Things, gaining key insights from Big Data, through the use of advanced analytics, becomes crucial. However, IoT also creates the need for petabyte scale storage of data from millions of devices. A new type of Storage is required which seamlessly integrates robust data analytics with massive scale. These storage systems will act as “smart systems” provide in-place analytics that speed discovery and enable businesses to quickly derive meaningful and actionable insights. In his session at @ThingsExpo, Paul Turner, Chief Marketing Officer at...
Most of the IoT Gateway scenarios involve collecting data from machines/processing and pushing data upstream to cloud for further analytics. The gateway hardware varies from Raspberry Pi to Industrial PCs. The document states the process of allowing deploying polyglot data pipelining software with the clear notion of supporting immutability. In his session at @ThingsExpo, Shashank Jain, a development architect for SAP Labs, discussed the objective, which is to automate the IoT deployment process from development to production scenarios using Docker containers.
In his keynote at @ThingsExpo, Chris Matthieu, Director of IoT Engineering at Citrix and co-founder and CTO of Octoblu, focused on building an IoT platform and company. He provided a behind-the-scenes look at Octoblu’s platform, business, and pivots along the way (including the Citrix acquisition of Octoblu).
In his General Session at 17th Cloud Expo, Bruce Swann, Senior Product Marketing Manager for Adobe Campaign, explored the key ingredients of cross-channel marketing in a digital world. Learn how the Adobe Marketing Cloud can help marketers embrace opportunities for personalized, relevant and real-time customer engagement across offline (direct mail, point of sale, call center) and digital (email, website, SMS, mobile apps, social networks, connected objects).
Countless business models have spawned from the IaaS industry – resell Web hosting, blogs, public cloud, and on and on. With the overwhelming amount of tools available to us, it's sometimes easy to overlook that many of them are just new skins of resources we've had for a long time. In his general session at 17th Cloud Expo, Harold Hannon, Sr. Software Architect at SoftLayer, an IBM Company, broke down what we have to work with, discussed the benefits and pitfalls and how we can best use them to design hosted applications.
The Internet of Everything is re-shaping technology trends–moving away from “request/response” architecture to an “always-on” Streaming Web where data is in constant motion and secure, reliable communication is an absolute necessity. As more and more THINGS go online, the challenges that developers will need to address will only increase exponentially. In his session at @ThingsExpo, Todd Greene, Founder & CEO of PubNub, exploreed the current state of IoT connectivity and review key trends and technology requirements that will drive the Internet of Things from hype to reality.
Two weeks ago (November 3-5), I attended the Cloud Expo Silicon Valley as a speaker, where I presented on the security and privacy due diligence requirements for cloud solutions. Cloud security is a topical issue for every CIO, CISO, and technology buyer. Decision-makers are always looking for insights on how to mitigate the security risks of implementing and using cloud solutions. Based on the presentation topics covered at the conference, as well as the general discussions heard between sessions, I wanted to share some of my observations on emerging trends. As cyber security serves as a fou...
With all the incredible momentum behind the Internet of Things (IoT) industry, it is easy to forget that not a single CEO wakes up and wonders if “my IoT is broken.” What they wonder is if they are making the right decisions to do all they can to increase revenue, decrease costs, and improve customer experience – effectively the same challenges they have always had in growing their business. The exciting thing about the IoT industry is now these decisions can be better, faster, and smarter. Now all corporate assets – people, objects, and spaces – can share information about themselves and thei...
The cloud. Like a comic book superhero, there seems to be no problem it can’t fix or cost it can’t slash. Yet making the transition is not always easy and production environments are still largely on premise. Taking some practical and sensible steps to reduce risk can also help provide a basis for a successful cloud transition. A plethora of surveys from the likes of IDG and Gartner show that more than 70 percent of enterprises have deployed at least one or more cloud application or workload. Yet a closer inspection at the data reveals less than half of these cloud projects involve production...
Discussions of cloud computing have evolved in recent years from a focus on specific types of cloud, to a world of hybrid cloud, and to a world dominated by the APIs that make today's multi-cloud environments and hybrid clouds possible. In this Power Panel at 17th Cloud Expo, moderated by Conference Chair Roger Strukhoff, panelists addressed the importance of customers being able to use the specific technologies they need, through environments and ecosystems that expose their APIs to make true change and transformation possible.
Microservices are a very exciting architectural approach that many organizations are looking to as a way to accelerate innovation. Microservices promise to allow teams to move away from monolithic "ball of mud" systems, but the reality is that, in the vast majority of organizations, different projects and technologies will continue to be developed at different speeds. How to handle the dependencies between these disparate systems with different iteration cycles? Consider the "canoncial problem" in this scenario: microservice A (releases daily) depends on a couple of additions to backend B (re...
Too often with compelling new technologies market participants become overly enamored with that attractiveness of the technology and neglect underlying business drivers. This tendency, what some call the “newest shiny object syndrome” is understandable given that virtually all of us are heavily engaged in technology. But it is also mistaken. Without concrete business cases driving its deployment, IoT, like many other technologies before it, will fade into obscurity.
Container technology is shaping the future of DevOps and it’s also changing the way organizations think about application development. With the rise of mobile applications in the enterprise, businesses are abandoning year-long development cycles and embracing technologies that enable rapid development and continuous deployment of apps. In his session at DevOps Summit, Kurt Collins, Developer Evangelist at, examined how Docker has evolved into a highly effective tool for application delivery by allowing increasingly popular Mobile Backend-as-a-Service (mBaaS) platforms to quickly crea...
The Internet of Things is clearly many things: data collection and analytics, wearables, Smart Grids and Smart Cities, the Industrial Internet, and more. Cool platforms like Arduino, Raspberry Pi, Intel's Galileo and Edison, and a diverse world of sensors are making the IoT a great toy box for developers in all these areas. In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists discussed what things are the most important, which will have the most profound effect on the world, and what should we expect to see over the next couple of years.
Growth hacking is common for startups to make unheard-of progress in building their business. Career Hacks can help Geek Girls and those who support them (yes, that's you too, Dad!) to excel in this typically male-dominated world. Get ready to learn the facts: Is there a bias against women in the tech / developer communities? Why are women 50% of the workforce, but hold only 24% of the STEM or IT positions? Some beginnings of what to do about it! In her Day 2 Keynote at 17th Cloud Expo, Sandy Carter, IBM General Manager Cloud Ecosystem and Developers, and a Social Business Evangelist, wil...
PubNub has announced the release of BLOCKS, a set of customizable microservices that give developers a simple way to add code and deploy features for realtime apps.PubNub BLOCKS executes business logic directly on the data streaming through PubNub’s network without splitting it off to an intermediary server controlled by the customer. This revolutionary approach streamlines app development, reduces endpoint-to-endpoint latency, and allows apps to better leverage the enormous scalability of PubNub’s Data Stream Network.