Welcome!

Virtualization Authors: Carmen Gonzalez, Trevor Parsons, Keith Cawley, Jason Bloomberg, Lori MacVittie

Related Topics: Virtualization, SOA & WOA

Virtualization: Article

Five Ways Data Virtualization Improves Data Warehousing

Data virtualization fills the EDW agility gap

An array of business intelligence (BI), predictive analytics, data and content mining, portals and more tap a growing volume of information sourced from enterprise data warehouses (EDW).  However, significant volumes of business-critical enterprise data resides outside the enterprise data warehouse.  To deliver the most comprehensive information to business decision-makers, IT teams are implementing data virtualization to preserve and extend their existing enterprise data warehouse investments.

This article discusses five integration patterns that combine both enterprise data warehouses and data virtualization to solve real business and IT problems along with examples from Composite Software's data virtualization customers.  The five patterns include:

  1. Data Warehouse Augmentation
  2. Data Warehouse Federation
  3. Data Warehouse Hub and Virtual Data Mart Spoke
  4. Complementing the ETL Process
  5. Data Warehouse Prototyping

Maximizing Value from Enterprise Data Warehouse Investments
Supporting critical, yet ever-changing information requirements in an environment of ever-increasing data volumes and complexity is a challenge well understood by large enterprises and government agencies today.

This inexorable pressure has and will continue to drive the demand for enterprise data warehouses as an array of BI, predictive analytics, data and content mining, portals and other key applications rely on data sourced from enterprise data warehouses.

However, business change often outpaces enterprise data warehouse evolution.  And while useful for physically consolidating and transforming a large portion of enterprise data, significant volumes of enterprise data resides outside the confines of the enterprise data warehouse.  Further, enterprise data warehouses themselves require support throughout their lifecycles, driving demand for solutions that prototype, migrate, extend, federate and leverage enterprise data warehouse assets.

Data virtualization middleware, an advanced version of earlier data federation or enterprise information integration (EII) middleware, complements enterprise data warehouses by providing a range of flexible data integration techniques that preserve, extend and thereby drive greater business value from existing enterprise data warehouse investments.

1. Data Warehouse Augmentation
Organizations overwhelmed by scattered data silos and exponentially growing data volumes have deployed data warehouses to meet many of their reporting requirements.  However, a number of data sources remain outside the warehouse.  Providing users with complete business insight in support of revenue, cost and risk management goals often requires the following:

  • Historical data from the warehouse and up-to-the-minute data from transaction systems or operational data stores;
  • Summarized data from the warehouse and drill-down detail from transaction systems or operational data stores;
  • Master customer, product or employee data from an MDM hub or warehouse and detail from transaction systems or operational data stores; and
  • Internal data from the warehouse and external data from outside sources including cloud computing.

Data virtualization effectively federates data-warehouse information with additional sources, therefore extending existing data warehouse schemas and data.  These complementary views are conducive to adding current data to historical warehouse data, detailed data to summarized warehouse data, and external data to internal warehouse data.

Energy Company Combines Up-to-the-minute and Historical Data - To optimize deployment of repair crews and equipment across more than 10,000 production oil wells, an energy company uses data virtualization to federate real-time crew, equipment and well status data from their wells and SAP's maintenance management system with historical surface, subsurface and business data from their enterprise data warehouse.  The net result is faster repairs for more uptime and thus more revenue.

2. Data Warehouse Federation
A primary reason enterprises implement data warehouses is to overcome the various transaction and analytic system silos typical in most large enterprise and government agencies today.  However, for a number of often pragmatic reasons, the single "enterprise" data warehouse remains elusive.  Instead, for these same reasons, multiple data warehouses and data marts have been developed and deployed, in effect perpetuating, rather than overcoming, the data silo issue.

Optimizing business performance requires data from across these various warehouses and marts.   But physically combining multiple marts and warehouses into a singular and complete enterprise-wide data warehouse is often too costly and time consuming.

Data virtualization federates multiple physical warehouses.  Two examples include combining data from the sales and financial warehouses, or combining two sales data warehouses after a corporate merger. This approach achieves logical consolidation of warehouses by creating an integrated view across them, using abstraction to rationalize the different schema designs.

Investment Bank Federate Financial Trading Data Warehouses - To enable more flexible customer self-service reporting and meet SEC compliance reporting mandates, a prime brokerage uses data virtualization to federate equity, fixed income and other investment positions and trades information from siloed trading data warehouses.  The net result is higher customer satisfaction and lower reporting costs.

3. Data Warehouse Hub and Virtual Spoke
A typical data warehouse pattern is a central data warehouse hub with satellite data marts as spokes around the hub.  These marts use a subset of the warehouse data and are used by a subset of the data warehouse users.   Sometimes these marts are created because the analytic tools require data in a different form than the warehouse.  On the other hand, they may be created to work around the controls provided by the warehouse, and thus act as "rogue" data marts.  Regardless of the reason, every additional mart adds cost and compromises data quality.

Data virtualization provides virtual data marts that eliminate, or at least significantly reduce, the need for physical data marts around the data warehouse hubs.  This approach abstracts the warehouse data to meet specific consuming tool and user query requirements, while still preserving the quality and controls inherent in the data warehouse.

Mutual Fund Manager Eliminates "Rogue" Financial Data Marts - A mutual fund company uses data virtualization to enable more than 150 financial analysts to build portfolio analysis models with MATLAB® and other analysis tools leveraging a wide range of equity financial data from a 10 terabyte financial research data warehouse.  Prior to introducing data virtualization, analysts frequently spawned new satellite data marts with useful data subsets for every new project.  To accelerate and simplify data access and to stop the proliferation of costly, unnecessary physical marts, the firm instead used data virtualization to create virtual data marts formed from a set of robust, reusable views that directly accessed the financial warehouse on demand.  This enables analysts to spend more time on analysis and less on access, thereby improving portfolio returns.  The IT team has also eliminated extra, unneeded marts and all the costs that go with maintaining them.

4. Complementing the ETL Process
Extract, Transform, and Load (ETL) middleware is the tool of choice for loading data warehouses.  However, there are some cases where ETL tools are not the most effective approach.  Some examples include:

  • ETL tools lack interfaces to easily access source data, for example data from packaged applications such as SAP or new technologies such as web services;
  • Readily available, existing virtual views or data services can be reused rather than building new ETL scripts from scratch; and
  • Tight batch windows require access, abstraction and federation activities to be pre-processed and virtually staged in advance of ETL processes.

ETL tools can leverage data virtualization views and data services as inputs to their batch processes, appearing as another data source. This integration pattern also integrates data source types that ETL tools cannot easily access as well as reuse existing views and services, saving time and costs.  Further these abstractions do not require ETL developers to understand the structure of, or interact directly with, actual data sources, significantly simplifying their work and reducing time to solution.

Energy Company Preprocesses SAP Data - To provide the SAP financial data required for their financial data warehouse, an energy company uses data virtualization to access and abstract SAP R/3 FICO data.  This replaces an error-prone, SAP data-expert-intensive, flat-file-extraction process that would not scale across a complex SAP landscape.  The results include more complete and timely data in the financial data warehouse enabling better performance management.

5. Data Warehouse Prototyping
Building a new data warehouse from scratch is a large undertaking that requires significant design, development and deployment efforts.  One of the biggest issues is schema change, a frequent activity early in a warehouse's lifecycle.   This change process requires modification of both the ETL scripts and physical data in the warehouse and thus becomes a bottleneck that slows new warehouse deployments.  This problem does not go away later in the lifecycle; it just lessens as the pace of change slows.

Data virtualization middleware can be the platform for prototype development environment for a new data warehouse.  In this prototype stage, a virtual data warehouse is built, rather than a physical one, saving the time to build the physical warehouse.  This virtual warehouse includes a full schema that is easy to iterate as well as a complete functional testing environment.  Performance testing is somewhat constrained at this stage, however.

Once the actual warehouse is deployed, the views and data services built during the prototype stage still have value.  These are useful for prototyping and testing subsequent warehouse schema changes that arise as business needs or underlying data sources change.

Government Agency Prototypes New Data Warehouses - To reduce data warehousing time-to-solution for new data warehouse projects and changes to existing ones, a government agency uses data virtualization.  The time spent in getting the data right has proven to be four times faster than directly building the ETL and warehouse, even when the subsequent translation of these working views into ETL scripts and physical warehouse schemas is factored in.

Key Takeaways
As data sources proliferate, including many web-based and cloud computing sources outside the traditional enterprise data warehouse, enterprises and government agencies are deploying solutions that combine enterprise data warehouses and data virtualization to deliver the most comprehensive information to decision-makers.  The results are extended life to existing information system investments, greater agility for adding new BI and other analytic technologies, and less disruption from corporate activities such as mergers and acquisitions.

More Stories By Robert Eve

Robert Eve is the EVP of Marketing at Composite Software, the data virtualization gold standard and co-author of Data Virtualization: Going Beyond Traditional Data Integration to Achieve Business Agility. Bob's experience includes executive level roles at leading enterprise software companies such as Mercury Interactive, PeopleSoft, and Oracle. Bob holds a Masters of Science from the Massachusetts Institute of Technology and a Bachelor of Science from the University of California at Berkeley.

@ThingsExpo Stories
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have spoken with, or attended presentations from, utilities in the United States, South America, Asia and Europe. This session will provide a look at the CREPE drivers for SmartGrids and the solution spaces used by SmartGrids today and planned for the near future. All organizations can learn from SmartGrid’s use of Predictive Maintenance, Demand Prediction, Cloud, Big Data and Customer-facing Dashboards...
The Internet of Things (IoT) is going to require a new way of thinking and of developing software for speed, security and innovation. This requires IT leaders to balance business as usual while anticipating for the next market and technology trends. Cloud provides the right IT asset portfolio to help today’s IT leaders manage the old and prepare for the new. Today the cloud conversation is evolving from private and public to hybrid. This session will provide use cases and insights to reinforce the value of the network in helping organizations to maximize their company’s cloud experience.
IoT is still a vague buzzword for many people. In his session at Internet of @ThingsExpo, Mike Kavis, Vice President & Principal Cloud Architect at Cloud Technology Partners, will discuss the business value of IoT that goes far beyond the general public's perception that IoT is all about wearables and home consumer services. The presentation will also discuss how IoT is perceived by investors and how venture capitalist access this space. Other topics to discuss are barriers to success, what is new, what is old, and what the future may hold.
Whether you're a startup or a 100 year old enterprise, the Internet of Things offers a variety of new capabilities for your business. IoT style solutions can help you get closer your customers, launch new product lines and take over an industry. Some companies are dipping their toes in, but many have already taken the plunge, all while dramatic new capabilities continue to emerge. In his session at Internet of @ThingsExpo, Reid Carlberg, Senior Director, Developer Evangelism at salesforce.com, to discuss real-world use cases, patterns and opportunities you can harness today.
All major researchers estimate there will be tens of billions devices – computers, smartphones, tablets, and sensors – connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo in Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be!
Noted IoT expert and researcher Joseph di Paolantonio (pictured below) has joined the @ThingsExpo faculty. Joseph, who describes himself as an “Independent Thinker” from DataArchon, will speak on the topic of “Smart Grids & Managing Big Utilities.” Over his career, Joseph di Paolantonio has worked in the energy, renewables, aerospace, telecommunications, and information technology industries. His expertise is in data analysis, system engineering, Bayesian statistics, data warehouses, business intelligence, data mining, predictive methods, and very large databases (VLDB). Prior to DataArchon, he served as a VP and Principal Analyst with Constellation Group. He is a member of the Boulder (Colo.) Brain Trust, an organization with a mission “to benefit the Business Intelligence and data management industry by providing pro bono exchange of information between vendors and independent analysts on new trends and technologies and to provide vendors with constructive feedback on their of...
Software AG helps organizations transform into Digital Enterprises, so they can differentiate from competitors and better engage customers, partners and employees. Using the Software AG Suite, companies can close the gap between business and IT to create digital systems of differentiation that drive front-line agility. We offer four on-ramps to the Digital Enterprise: alignment through collaborative process analysis; transformation through portfolio management; agility through process automation and integration; and visibility through intelligent business operations and big data.
There will be 50 billion Internet connected devices by 2020. Today, every manufacturer has a propriety protocol and an app. How do we securely integrate these "things" into our lives and businesses in a way that we can easily control and manage? Even better, how do we integrate these "things" so that they control and manage each other so our lives become more convenient or our businesses become more profitable and/or safe? We have heard that the best interface is no interface. In his session at Internet of @ThingsExpo, Chris Matthieu, Co-Founder & CTO at Octoblu, Inc., will discuss how these devices generate enough data to learn our behaviors and simplify/improve our lives. What if we could connect everything to everything? I'm not only talking about connecting things to things but also systems, cloud services, and people. Add in a little machine learning and artificial intelligence and now we have something interesting...
Last week, while in San Francisco, I used the Uber app and service four times. All four experiences were great, although one of the drivers stopped for 30 seconds and then left as I was walking up to the car. He must have realized I was a blogger. None the less, the next car was just a minute away and I suffered no pain. In this article, my colleague, Ved Sen, Global Head, Advisory Services Social, Mobile and Sensors at Cognizant shares his experiences and insights.
We are reaching the end of the beginning with WebRTC and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) irreversibly encoded. In his session at Internet of @ThingsExpo, Peter Dunkley, Technical Director at Acision, will look at how this identity problem can be solved and discuss ways to use existing web identities for real-time communication.
Can call centers hang up the phones for good? Intuitive Solutions did. WebRTC enabled this contact center provider to eliminate antiquated telephony and desktop phone infrastructure with a pure web-based solution, allowing them to expand beyond brick-and-mortar confines to a home-based agent model. It also ensured scalability and better service for customers, including MUY! Companies, one of the country's largest franchise restaurant companies with 232 Pizza Hut locations. This is one example of WebRTC adoption today, but the potential is limitless when powered by IoT. Attendees will learn real-world benefits of WebRTC and explore future possibilities, as WebRTC and IoT intersect to improve customer service.
From telemedicine to smart cars, digital homes and industrial monitoring, the explosive growth of IoT has created exciting new business opportunities for real time calls and messaging. In his session at Internet of @ThingsExpo, Ivelin Ivanov, CEO and Co-Founder of Telestax, will share some of the new revenue sources that IoT created for Restcomm – the open source telephony platform from Telestax. Ivelin Ivanov is a technology entrepreneur who founded Mobicents, an Open Source VoIP Platform, to help create, deploy, and manage applications integrating voice, video and data. He is the co-founder of TeleStax, an Open Source Cloud Communications company that helps the shift from legacy IN/SS7 telco networks to IP-based cloud comms. An early investor in multiple start-ups, he still finds time to code for his companies and contribute to open source projects.
The Internet of Things (IoT) promises to create new business models as significant as those that were inspired by the Internet and the smartphone 20 and 10 years ago. What business, social and practical implications will this phenomenon bring? That's the subject of "Monetizing the Internet of Things: Perspectives from the Front Lines," an e-book released today and available free of charge from Aria Systems, the leading innovator in recurring revenue management.
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges.
There’s Big Data, then there’s really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. In her session at 6th Big Data Expo®, Hannah Smalltree, Director at Treasure Data, to discuss how IoT, Big Data and deployments are processing massive data volumes from wearables, utilities and other machines.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at Internet of @ThingsExpo, Erik Lagerway, Co-founder of Hookflash, will walk through the shifting landscape of traditional telephone and voice services to the modern P2P RTC era of OTT cloud assisted services.
While great strides have been made relative to the video aspects of remote collaboration, audio technology has basically stagnated. Typically all audio is mixed to a single monaural stream and emanates from a single point, such as a speakerphone or a speaker associated with a video monitor. This leads to confusion and lack of understanding among participants especially regarding who is actually speaking. Spatial teleconferencing introduces the concept of acoustic spatial separation between conference participants in three dimensional space. This has been shown to significantly improve comprehension and conference efficiency.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, will discuss single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example to explain some of these concepts including when to use different storage models.
SYS-CON Events announced today that Gridstore™, the leader in software-defined storage (SDS) purpose-built for Windows Servers and Hyper-V, will exhibit at SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Gridstore™ is the leader in software-defined storage purpose built for virtualization that is designed to accelerate applications in virtualized environments. Using its patented Server-Side Virtual Controller™ Technology (SVCT) to eliminate the I/O blender effect and accelerate applications Gridstore delivers vmOptimized™ Storage that self-optimizes to each application or VM across both virtual and physical environments. Leveraging a grid architecture, Gridstore delivers the first end-to-end storage QoS to ensure the most important App or VM performance is never compromised. The storage grid, that uses Gridstore’s performance optimized nodes or capacity optimized nodes, starts with as few a...
The Transparent Cloud-computing Consortium (abbreviation: T-Cloud Consortium) will conduct research activities into changes in the computing model as a result of collaboration between "device" and "cloud" and the creation of new value and markets through organic data processing High speed and high quality networks, and dramatic improvements in computer processing capabilities, have greatly changed the nature of applications and made the storing and processing of data on the network commonplace. These technological reforms have not only changed computers and smartphones, but are also changing the data processing model for all information devices. In particular, in the area known as M2M (Machine-To-Machine), there are great expectations that information with a new type of value can be produced using a variety of devices and sensors saving/sharing data via the network and through large-scale cloud-type data processing. This consortium believes that attaching a huge number of devic...