Click here to close now.

Welcome!

Virtualization Authors: Andreas Grabner, Carmen Gonzalez, Elizabeth White, Bart Copeland, Ruxit Blog

Related Topics: Virtualization

Virtualization: Article

The Next Generation of Test Environment Management

Application-Behavior Virtualization

Traditional hardware and OS virtualization technology reduce software development/testing infrastructure costs and increase access to constrained systems. Yet, it's not always feasible to leverage hardware or OS virtualization for many large systems such as mainframes and ERPs. More pointedly, configuring and maintaining the environment and data needed to support development and test efforts still requires considerable time and resources. As a result, keeping a complex staged environment in synch with today's constantly-evolving Agile projects is a time-consuming, never-ending task.

Complementing traditional virtualization, Application-Behavior Virtualization (ABV) provides a new way for developers and testers to exercise their applications in incomplete, constantly evolving, and/or difficult-to-access environments. Rather than virtualizing entire applications and/or databases, Application-Behavior Virtualization focuses on virtualizing only the specific behavior that is exercised as developers and testers execute their core use cases. Beyond "service virtualization," it extends across all aspects of composite applications - services, mainframes, web and mobile device UIs, ERPs, ESB/JMS, legacy systems, and more.

This new breed of virtualization radically reduces the configuration time, hardware overhead, and data management efforts involved in standing up and managing a realistic and sustainable dev/test environment.

The Complexity of Quality
Today's complex, interdependent systems wreak havoc on parallel development and functional/performance testing efforts - significantly impacting productivity, quality, and project timelines. As systems become more complex and interdependent, development and quality efforts are further complicated by constraints that limit developer and tester access to realistic test environments. These constraints often include:

  • Missing/unstable components
  • Evolving development environments
  • Inaccessible third-party/partner systems and services
  • Systems that are too complex for test labs (mainframes or large ERPs)
  • Internal and external resources with multiple "owners"

The scope of what needs to be tested is increasing exponentially. With multiple new interfaces and ways for people to access core technology, systems and architectures have grown broader, larger, and more distributed - with multiple endpoints and access points. For example, you might have a thick client, a web browser, a device, and a mobile application all accessing the same critical component. Not surprisingly, testing in this environment has become very difficult and time consuming.

Furthermore, the number and range of people involved with software quality is rising. Advancements in development methodologies such as Agile are drawing more and more people into quality matters throughout the SDLC. For instance, business analysts are increasingly involved with user acceptance testing, QA has become responsible for a broader and more iterative quality cycle, and the development team is playing a more prominent role in the process of software quality and validation. Moreover, today's large distributed teams also exhibit a similar increase in team members involved with quality.

Also increasing are the permutations of moving parts - not only hardware and operating systems, but also client/server system upgrades, patches, and dependent third-party applications. As the service-oriented world broke apart many monolithic applications, service orientation also increased and distributed the number of connections and integration points involved in executing a business process.

Hardware and OS Virtualization Lowers Cost & Increases Access - Yet Significant Gaps Remain
In an attempt to provide all of the necessary team members ubiquitous access to realistic dev/test environments in light of these complexities, many organizations have turned to hardware and OS virtualization. Virtualizing the core test foundations - specific operating systems, configurations, platforms, etc. - has been a tremendous step forward for dev/test environment management. This virtualization provides considerable freedom from the live system, simultaneously reducing infrastructure costs and increasing access to certain types of systems. Moreover, leveraging the cloud in concert with virtualization provides a nearly unlimited bandwidth for scaling dependent systems.

Nevertheless, in terms of development or test environments, some significant gaps remain. First, some assets cannot be easily virtualized. For example, it's often unfeasible to leverage hardware or OS virtualization technology for large mainframe applications, third-party applications, or large ERPs.

Moreover, even when virtualization can be completed, you still need to configure and manage each one of those applications on top of the virtualized stack. Managing and maintaining the appropriate configuration and data integrity for all the dependent systems remains an ominous and time-consuming task. It is also a task that you will need some outside help with - you will inevitably be relying on other groups, such as operations or DevOps, to assist with at least certain aspects of the environment configuration and management.

Application-Behavior Virtualization reduces this configuration and data management overhead by enabling the developer or tester to rapidly isolate and virtualize just the behavior of the specific dependent components that they need to exercise in order to complete their end-to-end transactions. Rather than virtualizing entire systems, you virtualize only specific slices of dependent behavior critical to the execution of development and testing tasks.

It is completely feasible to use the cloud for scalability with Application-Behavior Virtualization. Nevertheless, since you're virtualizing only the specific behavior involved in dev/test transactions (not entire systems), the scope of what's being virtualized is diminished... and so is the need for significant incremental scalability.

What Is Application-Behavior Virtualization?
Application-Behavior Virtualization is a more focused and efficient strategy for eliminating the system and environment constraints that impede the team's ability to test their heterogeneous component-based applications. Instead of trying to virtualize the complete dependent component - the entire database, the entire third-party application, and so forth - you virtualize only the specific behavior that developers and testers actually need to exercise as they work on their particular applications, components, or scenarios.

For instance, instead of virtualizing an entire database (and performing all associated test data management as well as setting up the database for each test session), you monitor how the application interacts with the database, then you virtualize the related database behavior (the SQL queries that are passed to the database, the corresponding result sets that are returned, and so forth). This can then be accessed and adjusted as needed for different development and test scenarios.

To start, you designate which components you want to virtualize, then - as the application is exercised - the behavior of the associated transactions, messages, services, etc., is captured in what we call a "virtual asset." You can then configure this virtual asset by parameterizing its conditional behavior, performance criteria, and test data. This virtual asset can then emulate the actual behavior of the dependent system from that point forward, even if the live system is no longer accessible for development and testing.

Test data can be associated with these virtual assets, reducing the need for a dependent database and the need to configure and manage the dependent database that, if shared, usually gets corrupted.

By applying Application-Behavior Virtualization in this manner, you can remove the dependency on the actual live system/architecture while maintaining access to the dependent behavior. This ultra-focused approach significantly reduces the time and cost involved in managing multiple environments as well as complex test data management.

What Does Application-Behavior Virtualization Involve?
Application-Behavior Virtualization is achieved via the following phases:

  • Capture or model the real behavior of dependent systems
  • Configure the virtualized asset to meet demands of the test scenarios
  • Provision the virtualized asset for the appropriate team members or partners to access and test on their schedule

Phase 1: Capture
Real system behavior is captured using monitors to record live transaction details on the system under test by analyzing transaction logs, or by modeling behavior from a simple interface.

The intent here is to capture the behavior and performance of the dependent application for the system under test and leverage that behavior for development and testing efforts. This capturing can be done in three ways:

  1. If you have access to the live system, you can capture behavior by monitoring live system traffic. With a proxy monitoring traffic on the dependent system, the related messages are monitored, then the observed behavior is represented in a virtualized asset. This capturing can cover simple or composite behavior (e.g., a call to transfer funds in one endpoint can trigger an account balance update on another).
  2. If you want to emulate the behavior represented in transaction logs, virtual assets can be created by analyzing those logs. This is a more passive (and less politically volatile) approach to capturing the system behavior.
  3. If you're working in an environment that is evolving to include new functionality, you might want to model the behavior of the "not yet implemented" functionality within the Application-Behavior Virtualization interface. Leveraging the broad scope of protocol support available to facilitate modeling, you can rapidly build a virtual asset that emulates practically any anticipated behavior. For instance, you can visually model various message formats such as XML, JSON, and various legacy, financial, healthcare, and other domain-specific formats.

Phase 2: Configure
The virtualized asset's behavior can be fine-tuned, including performance, data source usage, and conditional response criteria.

After you use any of the three above methods to create a virtual asset, you can then instruct that asset to fine-tune or extend the behavior that it emulates. For instance, you can apply Quality of Service metrics so you can alter how you would like the asset to behave from the performance (timing, latency, and delay) perspective. You can also apply and modify test data for each particular asset to reproduce specific conditions critical for completing dev/test tasks. For example, you can configure various error and failure conditions that are difficult to reproduce or replicate with real systems. By adding data sources and providing conditional response criteria, you can tune the virtualized asset to perform as expected - or as unexpected (for negative testing).

Phase 3: Provision and Test
The environment is then provisioned for secure access across teams and business partners. The virtualized asset can then be leveraged for testing.

Once a virtualized asset is created, it can be provisioned for simplified uniform access across teams and business partners - either locally or globally (on a globally-accessible server, or in the cloud). They can then be used in unit, functional, and performance tests. Since virtual assets leverage a wide array of native protocols, they can be accessed for manual testing or automated testing by any test suite or any test framework, including Parasoft Test, HP Quality Center suite, IBM Rational Quality Management suite, and Oracle ATS. It is also easy to scale virtualized assets to support large-scale, high-throughput load and performance tests.

Even after the initial provisioning, these virtual assets are still easily modifiable and reusable to assist you in various dev/test scenarios. For instance, one of your test scenarios might access a particular virtual asset that applies a certain set of conditional responses. You can instantly construct an additional virtual asset that inherits those original conditions and then you can adjust them as needed to meet the needs of a similar test scenario.

How Application-Behavior Virtualization Speeds Testing and Cuts Costs: Three Common Use Cases
To conclude, let's look at how organizations have successfully applied Application-Behavior Virtualization to address dev/test environment management challenges in three common contexts:

  1. Performance/capacity-constrained environment
  2. Complex, difficult-to-access systems (mainframes, large ERPs, 3rd party systems)
  3. Parallel development (Agile or other iterative processes)

Performance/Capacity-Constrained Environments
Staged environments frequently lack the infrastructure bandwidth required to deliver realistic performance. Placing multiple virtualized applications on a single piece of hardware can increase access to a constrained resource, but the cost of this increased access is often degraded performance. Although the increased access could technically enable the execution of performance and load tests, the results typically would not reflect real-world behavior, significantly undermining the value of such testing efforts.

Application-Behavior Virtualization allows you to replicate realistic performance data independent of the live system. Once you create a virtual asset that captures the current performance, you can adjust the parameters to simulate more realistic performance. Performance tests can then run against the virtual asset (with realistic performance per the Quality of Service agreement) rather than the staged asset (with degraded performance).

Controlling the virtual asset's performance criteria is simply a matter of adjusting controls for timing, latency, and delay. In addition to simulating realistic behavior, this can also be used to instantly reproduce performance conditions that would otherwise be difficult to set up and control. For instance, you can simulate various levels of slow performance in a dependent component, then zero in on how your application component responds to such bottlenecks.

Even when it is possible to test against systems that are performing realistically, it is often not feasible to hit various components with the volume typical of effective load/stress tests. For example, you might need to validate how your application responds to extreme traffic volumes simulating peak conditions, but how do you proceed if your end-to-end transactions pass through a third-party service that charges per-transaction access fees?

If your performance tests pass through a component that you cannot (or do not want to) access under extreme load testing conditions, Application-Behavior Virtualization enables you to capture its behavior under a low-volume test (e.g., a single user transaction), adjust the captured performance criteria as desired, then perform all subsequent load testing against that virtualized component instead of the actual asset. In the event that the constrained component is not available for capture, you can create a virtual asset from scratch - using Application-Behavior Virtualization visual modeling interfaces to define its expected behavior and performance.

Complex, Difficult-to-Access Systems (Mainframes, Large ERPs, Third-Party Systems)
With large complex systems (mainframes, large ERPs, third-party systems), multiple development and test teams are commonly vying for limited system access for testing. Most of these systems are too complex for a test lab or a staged environment. To exercise end-to-end transactions involving these components, teams usually need to schedule (and pay for) access to a shared resource. This approach commonly causes test efforts to be delayed and/or prevents the team from performing the level and breadth of testing that they would like. For iterative development processes (e.g., Agile), the demand for frequent and immediate testing increases the severity of these delays and fees exponentially.

Even if organizations manage to use virtualization for these complex systems, proper configuration for the team's distinct testing needs would require a tremendous amount of work. And once that obstacle is overcome, another is right on its heels: developing and managing the necessary set of test data can also be overwhelming.

When teams use Application-Behavior Virtualization in such contexts, they only need to access the dependent resources long enough to capture the specific functionality related to the components and transactions they are working on. With this behavior captured in virtual assets, developers and testers can then access it continuously, allowing them to exercise end-to-end transactions at whatever time they want (without scheduling) and as frequently as they want (without incurring exorbitant transaction/access fees).

Parallel Development (Agile or Other Iterative Processes)
Even for simple applications, providing continued access to a realistic test environment can be challenging for teams engaged in parallel development (Agile or other iterative processes). A wide range of team members, including developers, testers, sometimes business analysts, all need easy access to a dev/test environment that is evolving in synch with their application. If the team decided to take the traditional virtualization route here, they would not only face all the initial setup overhead, but also be mired in constant work to ensure that the virtualized systems remain in step with the changes introduced in the latest iteration. When the team ends up waiting for access to dependent functionality, agility is stifled

Application-Behavior Virtualization reduces these constraints and associated delays by giving developers and testers the ability to rapidly emulate the needed behavior rather than having to wait for others to upgrade, configure, and manage the dependent systems. Even if anticipated functionality or components are not yet implemented, their behavior can be modeled rapidly, then deployed so team members can execute the necessary end-to-end transactions without delay, And if the dependent functionality recently changed, previously captured behavior can be easily modified either by re-capturing key transactions or by adjusting behavior settings in a graphical interface (without scripting or coding).

For example, many organizations are developing mobile applications, and this development is typically performed by a separate mobile development team. Since mobile applications commonly depend on core application components developed and maintained by other teams, the mobile team is often delayed as they wait for the other teams to complete work on the core components that their own mobile apps need to interact with. Application-Behavior Virtualization can eliminate these delays by allowing the mobile development team to emulate the behavior of the dependent components even if the actual components are incomplete, evolving, or otherwise difficult-to-access during the parallel development process.

Key Takeaways
Leveraging Application-Behavior Virtualization, teams reduce the complexity and the costs of managing multiple environments while providing ubiquitous access for development and test. Application-Behavior Virtualization helps you:

  • Reduce infrastructure costs
  • Improve provisioning/maintenance of test environments
  • Increase test coverage
  • Reduce defects
  • Improve predictability/control of software cycle times
  • Increase development productivity
  • Reduce third-party access fees

More Stories By Wayne Ariola

Wayne Ariola is Vice President of Strategy and Corporate Development at Parasoft, a leading provider of integrated software development management, quality lifecycle management, and dev/test environment management solutions. He leverages customer input and fosters partnerships with industry leaders to ensure that Parasoft solutions continuously evolve to support the ever-changing complexities of real-world business processes and systems. Ariola has more than 15 years of strategic consulting experience within the technology and software development industries. He holds a BA from the University of California at Santa Barbara and an MBA from Indiana University.

Comments (1) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
erikagd 07/29/11 02:11:00 PM EDT

For more information about Application Behavior Virtualization, please visit: www.parasoft.com/virtualize

@ThingsExpo Stories
As organizations shift toward IT-as-a-service models, the need for managing and protecting data residing across physical, virtual, and now cloud environments grows with it. CommVault can ensure protection &E-Discovery of your data – whether in a private cloud, a Service Provider delivered public cloud, or a hybrid cloud environment – across the heterogeneous enterprise. In his session at 16th Cloud Expo, Randy De Meno, Chief Technologist - Windows Products and Microsoft Partnerships, will discuss how to cut costs, scale easily, and unleash insight with CommVault Simpana software, the only si...
The explosion of connected devices / sensors is creating an ever-expanding set of new and valuable data. In parallel the emerging capability of Big Data technologies to store, access, analyze, and react to this data is producing changes in business models under the umbrella of the Internet of Things (IoT). In particular within the Insurance industry, IoT appears positioned to enable deep changes by altering relationships between insurers, distributors, and the insured. In his session at @ThingsExpo, Michael Sick, a Senior Manager and Big Data Architect within Ernst and Young's Financial Servi...
Even as cloud and managed services grow increasingly central to business strategy and performance, challenges remain. The biggest sticking point for companies seeking to capitalize on the cloud is data security. Keeping data safe is an issue in any computing environment, and it has been a focus since the earliest days of the cloud revolution. Understandably so: a lot can go wrong when you allow valuable information to live outside the firewall. Recent revelations about government snooping, along with a steady stream of well-publicized data breaches, only add to the uncertainty
PubNub on Monday has announced that it is partnering with IBM to bring its sophisticated real-time data streaming and messaging capabilities to Bluemix, IBM’s cloud development platform. “Today’s app and connected devices require an always-on connection, but building a secure, scalable solution from the ground up is time consuming, resource intensive, and error-prone,” said Todd Greene, CEO of PubNub. “PubNub enables web, mobile and IoT developers building apps on IBM Bluemix to quickly add scalable realtime functionality with minimal effort and cost.”
The Workspace-as-a-Service (WaaS) market will grow to $6.4B by 2018. In his session at 16th Cloud Expo, Seth Bostock, CEO of IndependenceIT, will begin by walking the audience through the evolution of Workspace as-a-Service, where it is now vs. where it going. To look beyond the desktop we must understand exactly what WaaS is, who the users are, and where it is going in the future. IT departments, ISVs and service providers must look to workflow and automation capabilities to adapt to growing demand and the rapidly changing workspace model.
Sensor-enabled things are becoming more commonplace, precursors to a larger and more complex framework that most consider the ultimate promise of the IoT: things connecting, interacting, sharing, storing, and over time perhaps learning and predicting based on habits, behaviors, location, preferences, purchases and more. In his session at @ThingsExpo, Tom Wesselman, Director of Communications Ecosystem Architecture at Plantronics, will examine the still nascent IoT as it is coalescing, including what it is today, what it might ultimately be, the role of wearable tech, and technology gaps stil...
With several hundred implementations of IoT-enabled solutions in the past 12 months alone, this session will focus on experience over the art of the possible. Many can only imagine the most advanced telematics platform ever deployed, supporting millions of customers, producing tens of thousands events or GBs per trip, and hundreds of TBs per month. With the ability to support a billion sensor events per second, over 30PB of warm data for analytics, and hundreds of PBs for an data analytics archive, in his session at @ThingsExpo, Jim Kaskade, Vice President and General Manager, Big Data & Ana...
In the consumer IoT, everything is new, and the IT world of bits and bytes holds sway. But industrial and commercial realms encompass operational technology (OT) that has been around for 25 or 50 years. This grittier, pre-IP, more hands-on world has much to gain from Industrial IoT (IIoT) applications and principles. But adding sensors and wireless connectivity won’t work in environments that demand unwavering reliability and performance. In his session at @ThingsExpo, Ron Sege, CEO of Echelon, will discuss how as enterprise IT embraces other IoT-related technology trends, enterprises with i...
When it comes to the Internet of Things, hooking up will get you only so far. If you want customers to commit, you need to go beyond simply connecting products. You need to use the devices themselves to transform how you engage with every customer and how you manage the entire product lifecycle. In his session at @ThingsExpo, Sean Lorenz, Technical Product Manager for Xively at LogMeIn, will show how “product relationship management” can help you leverage your connected devices and the data they generate about customer usage and product performance to deliver extremely compelling and reliabl...
The Internet of Things (IoT) is causing data centers to become radically decentralized and atomized within a new paradigm known as “fog computing.” To support IoT applications, such as connected cars and smart grids, data centers' core functions will be decentralized out to the network's edges and endpoints (aka “fogs”). As this trend takes hold, Big Data analytics platforms will focus on high-volume log analysis (aka “logs”) and rely heavily on cognitive-computing algorithms (aka “cogs”) to make sense of it all.
Hadoop as a Service (as offered by handful of niche vendors now) is a cloud computing solution that makes medium and large-scale data processing accessible, easy, fast and inexpensive. In his session at Big Data Expo, Kumar Ramamurthy, Vice President and Chief Technologist, EIM & Big Data, at Virtusa, will discuss how this is achieved by eliminating the operational challenges of running Hadoop, so one can focus on business growth. The fragmented Hadoop distribution world and various PaaS solutions that provide a Hadoop flavor either make choices for customers very flexible in the name of opti...
HP and Aruba Networks on Monday announced a definitive agreement for HP to acquire Aruba, a provider of next-generation network access solutions for the mobile enterprise, for $24.67 per share in cash. The equity value of the transaction is approximately $3.0 billion, and net of cash and debt approximately $2.7 billion. Both companies' boards of directors have approved the deal. "Enterprises are facing a mobile-first world and are looking for solutions that help them transition legacy investments to the new style of IT," said Meg Whitman, Chairman, President and Chief Executive Officer of HP...
One of the biggest impacts of the Internet of Things is and will continue to be on data; specifically data volume, management and usage. Companies are scrambling to adapt to this new and unpredictable data reality with legacy infrastructure that cannot handle the speed and volume of data. In his session at @ThingsExpo, Don DeLoach, CEO and president of Infobright, will discuss how companies need to rethink their data infrastructure to participate in the IoT, including: Data storage: Understanding the kinds of data: structured, unstructured, big/small? Analytics: What kinds and how responsiv...
Since 2008 and for the first time in history, more than half of humans live in urban areas, urging cities to become “smart.” Today, cities can leverage the wide availability of smartphones combined with new technologies such as Beacons or NFC to connect their urban furniture and environment to create citizen-first services that improve transportation, way-finding and information delivery. In her session at @ThingsExpo, Laetitia Gazel-Anthoine, CEO of Connecthings, will focus on successful use cases.
Sensor-enabled things are becoming more commonplace, precursors to a larger and more complex framework that most consider the ultimate promise of the IoT: things connecting, interacting, sharing, storing, and over time perhaps learning and predicting based on habits, behaviors, location, preferences, purchases and more. In his session at @ThingsExpo, Tom Wesselman, Director of Communications Ecosystem Architecture at Plantronics, will examine the still nascent IoT as it is coalescing, including what it is today, what it might ultimately be, the role of wearable tech, and technology gaps stil...
The true value of the Internet of Things (IoT) lies not just in the data, but through the services that protect the data, perform the analysis and present findings in a usable way. With many IoT elements rooted in traditional IT components, Big Data and IoT isn’t just a play for enterprise. In fact, the IoT presents SMBs with the prospect of launching entirely new activities and exploring innovative areas. CompTIA research identifies several areas where IoT is expected to have the greatest impact.
Wearable devices have come of age. The primary applications of wearables so far have been "the Quantified Self" or the tracking of one's fitness and health status. We propose the evolution of wearables into social and emotional communication devices. Our BE(tm) sensor uses light to visualize the skin conductance response. Our sensors are very inexpensive and can be massively distributed to audiences or groups of any size, in order to gauge reactions to performances, video, or any kind of presentation. In her session at @ThingsExpo, Jocelyn Scheirer, CEO & Founder of Bionolux, will discuss ho...
Cloud data governance was previously an avoided function when cloud deployments were relatively small. With the rapid adoption in public cloud – both rogue and sanctioned, it’s not uncommon to find regulated data dumped into public cloud and unprotected. This is why enterprises and cloud providers alike need to embrace a cloud data governance function and map policies, processes and technology controls accordingly. In her session at 15th Cloud Expo, Evelyn de Souza, Data Privacy and Compliance Strategy Leader at Cisco Systems, will focus on how to set up a cloud data governance program and s...
Containers and microservices have become topics of intense interest throughout the cloud developer and enterprise IT communities. Accordingly, attendees at the upcoming 16th Cloud Expo at the Javits Center in New York June 9-11 will find fresh new content in a new track called PaaS | Containers & Microservices Containers are not being considered for the first time by the cloud community, but a current era of re-consideration has pushed them to the top of the cloud agenda. With the launch of Docker's initial release in March of 2013, interest was revved up several notches. Then late last...
Roberto Medrano, Executive Vice President at SOA Software, had reached 30,000 page views on his home page - http://RobertoMedrano.SYS-CON.com/ - on the SYS-CON family of online magazines, which includes Cloud Computing Journal, Internet of Things Journal, Big Data Journal, and SOA World Magazine. He is a recognized executive in the information technology fields of SOA, internet security, governance, and compliance. He has extensive experience with both start-ups and large companies, having been involved at the beginning of four IT industries: EDA, Open Systems, Computer Security and now SOA.