Welcome!

Virtualization Authors: Carmen Gonzalez, Liz McMillan, Gilad Parann-Nissany, Pat Romanski, Elizabeth White

Related Topics: Cloud Expo

Cloud Expo: Blog Feed Post

The Encrypted Elephant in the Cloud Room

Encrypting data in the cloud is tricky, defying long held best practices regarding key management. Porticor aims to change that

Anyone who’s been around cryptography for a while understands that secure key management is a critical foundation for any security strategy involving encryption. Back in the day it was SSL, and an entire industry of solutions grew up specifically aimed at protecting the key to the kingdom – the master key. Tamper-resistant hardware devices are still required for some US Federal security standards under the FIPS banner, with specific security protections at the network and software levels providing additional assurance that the ever important key remains safe.

In many cases it’s advised that the master key is not even kept on the same premises as the systems that use it. It must be locked up, safely, offsite; transported via a secure briefcase, handcuffed to a security officer and guarded by dire wolves. With very, very big teeth.

No, I am not exaggerating. At least not much. The master key really is that important to the security of cryptography.

That’s why encryption in the cloud is such a tough nut to crack. Where, exactly, do you store the keys used to encrypt those Amazon S3 objects? Where, exactly, do you store the keys used to encrypt disk volumes in any cloud storage service?

Start-up Porticor has an answer, one that breaks (literally and figuratively) traditional models of key management and offers a pathway to a more secure method of managing cryptography in the cloud.

SPLIT-KEY ENCRYPTION andyburton-quote

Porticor is a combination SaaS / IaaS solution designed to enable encryption of data at rest in IaaS environments with a focus on cloud, currently available on AWS and other clouds. It’s a combination in not just deployment model – which is rapidly becoming the norm for cloud-based services – but in architecture, as well.

To alleviate violating best practices with respect to key management, i.e. you don’t store the master key right next to the data it’s been used to encrypt – Porticor has developed a technique it calls “Split-Key Encryption.”

Data encryption comprises, you’ll recall, the execution of an encryption algorithm on the data using a secret key, the result of which is ciphertext. The secret key is the, if you’ll pardon the pun, secret to gaining access to that data once it has been encrypted. Storing it next to the data, then, is obviously a Very Bad Idea™ and as noted above the industry has already addressed the risk of doing so with a variety of solutions. Porticor takes a different approach by focusing on the security of the key not only from the perspective of its location but of its form.

The secret master key in Porticor’s system is actually a mathematical combination of the master key generated on a per project (disk volumes or S3 objects) basis and a unique key created by the Porticor Virtual Key Management™ (PVKM™)  system. The master key is half of the real key, and the PVKM generated key the other half. Only by combining the two – mathematically – can you discover the true secret key needed to work with the encrypted data.

split key encryptionThe PVKM generated key is stored in Porticor’s SaaS-based key management system, while the master keys are stored in the Porticor virtual appliance, deployed in the cloud along with the data its protecting.

The fact that the secret key can only be derived algorithmically from the two halves of the keys enhances security by making it impossible to find the actual encryption key from just one of the halves, since the math used removes all hints to the value of that key. It removes the risk of someone being able to recreate the secret key correctly unless they have both halves at the same time. The math could be a simple concatenation, but it could also be a more complicated algebraic equation. It could ostensibly be different for each set of keys, depending on the lengths to which Porticor wants to go to minimize the risk of someone being able to recreate the secret key correctly.

Still, some folks might be concerned that the master key exists in the same environment as the data it ultimately protects. Porticor intends to address that by moving to a partially homomorphic key encryption scheme.

HOMOMORPHIC KEY ENCRYPTION

If you aren’t familiar with homomorphic encryption, there are several articles I’d encourage you to read, beginning with “Homomorphic Encryption” by Technology Review followed by Craig Stuntz’s “What is Homomorphic Encryption, and Why Should I Care?” If you can’t get enough of equations and formulas, then wander over to Wikipedia and read its entry on Homomorphic Encryption as well.

Porticor itself has a brief discussion of the technology, but it is not nearly as deep as the aforementioned articles.

In a nutshell (in case you can’t bear to leave this page) homomorphic encryption is the fascinating property of some algorithms to work both on plaintext as well as on encrypted versions of the plaintext and come up with the same result. Executing the algorithm against encrypted data and then decrypting it gives the same result as executing the algorithm against the unencrypted version of the data.

So, what Porticor plans to do is apply homomorphic encryption to the keys, ensuring that the actual keys are no longer stored anywhere – unless you remember to tuck them away someplace safe or write it down. The algorithms for joining the two keys are performed on the encrypted versions of the keys, resulting in an encrypted symmetric key specific to one resource – a disk volume or S3 object.

The resulting system ensures that:

  • No keys are ever on a disk in plain form
  • Master keys are never decrypted, and so they are never known to anyone outside the application owner themselves
  • The "second half" of each key (PVKM stored) are also never decrypted, and are never even known to anyone (not even Porticor)
  • Symmetric keys for a specific resource exist in memory only, and are decrypted for use only when the actual data is needed, then they are discarded

This effectively eliminates one more argument against cloud – that keys cannot adequately be secured.

In a traditional data encryption solution the only thing you need is the secret key to unlock the data. Using Porticor’s split-key technology you need the PVKM key and the master key used to recombine those keys. Layer atop that homomorphic key encryption to ensure the keys don’t actually exist anywhere, and you have a rejoined to the claim that secure data and cloud simply cannot coexist.

In addition to the relative newness of the technique (and the nature of being untried at this point) the argument against homomorphic encryption of any kind is a familiar one: performance. Cryptography in general is by no means a fast operation and there is more than a decade’s worth of technology in the form of hardware acceleration (and associated performance tests) specifically designed to remediate the slow performance of cryptographic functions. Homomorphic encryption is noted to be excruciatingly slow and the inability to leverage any kind of hardware acceleration in cloud computing environments offers no relief. Whether this performance penalty will be worth the additional level of security such a system adds is largely a matter of conjecture and highly dependent upon the balance between security and performance required by the organization.

Read the original blog entry...

More Stories By Lori MacVittie

Lori MacVittie is responsible for education and evangelism of application services available across F5’s entire product suite. Her role includes authorship of technical materials and participation in a number of community-based forums and industry standards organizations, among other efforts. MacVittie has extensive programming experience as an application architect, as well as network and systems development and administration expertise. Prior to joining F5, MacVittie was an award-winning Senior Technology Editor at Network Computing Magazine, where she conducted product research and evaluation focused on integration with application and network architectures, and authored articles on a variety of topics aimed at IT professionals. Her most recent area of focus included SOA-related products and architectures. She holds a B.S. in Information and Computing Science from the University of Wisconsin at Green Bay, and an M.S. in Computer Science from Nova Southeastern University.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, and physical persons. In the IoT vision, every new "thing" - sensor, actuator, data source, data con...
SYS-CON Events announced today that Gridstore™, the leader in hyper-converged infrastructure purpose-built to optimize Microsoft workloads, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Gridstore™ is the leader in hyper-converged infrastructure purpose-built for Microsoft workloads and designed to accelerate applications in virtualized environments. Gridstore’s hyper-converged infrastructure is the industry’s first all flash version of HyperConverged Appliances that include both compute and storag...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
The Internet of Things promises to transform businesses (and lives), but navigating the business and technical path to success can be difficult to understand. In his session at @ThingsExpo, Sean Lorenz, Technical Product Manager for Xively at LogMeIn, demonstrated how to approach creating broadly successful connected customer solutions using real world business transformation studies including New England BioLabs and more.
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
The 3rd International @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that it is now accepting Keynote Proposals. The Internet of Things (IoT) is the most profound change in personal and enterprise IT since the creation of the Worldwide Web more than 20 years ago. All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades.
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
"There is a natural synchronization between the business models, the IoT is there to support ,” explained Brendan O'Brien, Co-founder and Chief Architect of Aria Systems, in this SYS-CON.tv interview at the 15th International Cloud Expo®, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
WebRTC defines no default signaling protocol, causing fragmentation between WebRTC silos. SIP and XMPP provide possibilities, but come with considerable complexity and are not designed for use in a web environment. In his session at @ThingsExpo, Matthew Hodgson, technical co-founder of the Matrix.org, discussed how Matrix is a new non-profit Open Source Project that defines both a new HTTP-based standard for VoIP & IM signaling and provides reference implementations.
DevOps Summit 2015 New York, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that it is now accepting Keynote Proposals. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development cycles that produce software that is obsolete at launch. DevOps may be disruptive, but it is essential.
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...