Welcome!

Virtualization Authors: Carmen Gonzalez, Pat Romanski, Nitin Bandugula, Liz McMillan, Yeshim Deniz

Related Topics: Virtualization, Java, SOA & WOA, .NET, Web 2.0, Cloud Expo

Virtualization: Article

The Seven Properties of Network Virtualization

A great starting point for requirements for your enterprise architecture

A review of the key properties of network virtualization can inform your planning and help in requirements generation as you architect new systems. The best source of information I’ve found on network virtualization is at Nicira, a firm anyone with an infrastructure should be paying attention to now.

The following is drawn from their paper on The Seven Properties of Network Virtualization”

1. Independence from network hardware
In the emerging multi-tenant cloud, the old rules of vendor lock-in are rapidly changing. A network virtualization platform must be able to operate on top of any network hardware, much like x86 server hypervisors work on top of any server. This independence means the physical network can be supplied by any combination of hardware vendors. Over time, newer architectures that better support virtualization as well as commodity options are becoming available, further improving the capital efficiency of cloud.

2. Faithful reproduction of the physical network service model
The vast bulk of enterprise applications have not been written as web applications, and the cost/payback ratio of rewriting tens of billions of dollars of application development is neither realistic nor even possible. Therefore, a network virtualization platform must be able to support any workload that runs within a physical environment today. In order to do so, it must recreate Layer 2 and Layer 3 semantics fully, including support for broadcast and multicast. In addition it must be able to offer higher-level in-network services that are used in networks today such as ACLs, load balancing, and WAN optimization.

It is also important that the virtual network solution fully virtualize the network address space. Commonly, virtual networks are migrated from or integrated with physical environments where it is not possible to change the current addresses of the VMs. Therefore, it is important that a virtual network environment not dictate or limit the addresses that can be used within the virtual networks, and that it allows overlapping IP and MAC addresses between virtual networks.

3. Follow operational model of compute virtualization
A key property of compute virtualization is the ability to treat a VM as soft state, meaning it can be moved, paused, resumed, snapshotted, and rewound to a previous configuration. In order to integrate seamlessly in a virtualized environment, a network virtualization solution must support the same control and flexibility for virtual networks.

4. Compatible with any hypervisor platform
Network virtualization platforms must also be able to work with the full range of server hypervisors, including Xen, XenServer, KVM, ESX, and HyperV, providing the ability to control virtualized network connectivity across any network substrate as well as between hypervisor environments. This “any-to-any” paradigm shift provides for:

  • Ÿ More effective utilization of existing network investments,
  • Ÿ Cost and management reduction of new, Layer 3 fabric innovations,
  • Ÿ Workload portability from enterprise to cloud service provider environments.

5. Secure isolation between virtual networks, the physical network, and the control plane
The promise of multi-tenancy requires maximum utilization of compute, storage and network assets through sharing of the physical infrastructure. It is important that a network virtualization platform maintain this consolidation while still providing the isolation needed by regulatory compliance standards such as PCI or FINRA, as well as provide the same security guarantees of compute virtualization.Like compute virtualization, a network virtualization platform should provide strict address isolation between virtual networks (meaning one virtual network cannot inadvertently address another) as well address isolation between the virtual networks and the physical network. This last property removes the physical network as an attack target unless the virtualization platform itself is undermined.

6. Cloud performance and scale
Cloud drives a significant increase in the scale of tenants, servers, and applications supported in a single data center. However, current networks are still bound by the physical limitations of networks, especially VLANs (which are limited to 4,096). VLANS were designed during an earlier era before server virtualization dramatically increased the requirements for the numbers of virtually isolated environments. Network virtualization must support considerably larger scale deployments with tens thousands, or even hundreds of thousands of virtual networks. This not only enables a larger number of tenants, but also support critical services like disaster recovery, data center utilization, etc., which outstrip current limitations.

A virtual network solution should also not introduce any chokepoints or single points of failure into the network. This roughly entails that to all components for the solution must be fully distributed, and all network paths should support multi-pathing and failover. Finally, a network virtualization solution should also not significantly impact data path performance. The number of lookups on the data path required to implemented network virtualization is similar to what data paths perform today. It is possible to implement full network virtualization in software at the edge of the network and still perform at full 10G line rates.

7. Programmatic network provisioning and control
Traditionally, networks are configured one device at a time, although this can be accelerated through the development of scripts (which emulate individual configuration). Current approaches make network configuration slow, error prone and open to security holes through a mistaken keystroke. In a large-scale cloud environment, this introduces a level of fragility and manual configuration costs that hurt service velocity and/or profitability.

A network virtualization solution should provide full control over all virtual network resources and allow for these resources to be managed programmatically. This allows the provisioning to happen at the service level versus the element level significantly simplifying provisioning logic and any disruption that might occur due to physical network node failure. The programmatic API should provide full access to management and configuration of a virtual network to not only support dynamic provisioning at cloud time scales, but also the ability to introduce and configure services on the fly.

Concluding Thoughts
The seven key features above are a great starting point for requirements for your enterprise architecture. The good news is that you can enjoy all these features of network virtualization without significant change. The only thing it really requires is an understanding of this new approach and access to the technical thought leadership.

For more on this topic a great place to start your research is with Nicira.

 

This post by was first published at CTOvision.com.

More Stories By Bob Gourley

Bob Gourley, former CTO of the Defense Intelligence Agency (DIA), is Founder and CTO of Crucial Point LLC, a technology research and advisory firm providing fact based technology reviews in support of venture capital, private equity and emerging technology firms. He has extensive industry experience in intelligence and security and was awarded an intelligence community meritorious achievement award by AFCEA in 2008, and has also been recognized as an Infoworld Top 25 CTO and as one of the most fascinating communicators in Government IT by GovFresh.

@ThingsExpo Stories
“With easy-to-use SDKs for Atmel’s platforms, IoT developers can now reap the benefits of realtime communication, and bypass the security pitfalls and configuration complexities that put IoT deployments at risk,” said Todd Greene, founder & CEO of PubNub. PubNub will team with Atmel at CES 2015 to launch full SDK support for Atmel’s MCU, MPU, and Wireless SoC platforms. Atmel developers now have access to PubNub’s secure Publish/Subscribe messaging with guaranteed ¼ second latencies across PubNub’s 14 global points-of-presence. PubNub delivers secure communication through firewalls, proxy ser...
We’re no longer looking to the future for the IoT wave. It’s no longer a distant dream but a reality that has arrived. It’s now time to make sure the industry is in alignment to meet the IoT growing pains – cooperate and collaborate as well as innovate. In his session at @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, will examine the key ingredients to IoT success and identify solutions to challenges the industry is facing. The deep industry expertise behind this presentation will provide attendees with a leading edge view of rapidly emerging IoT oppor...
DevOps Summit 2015 New York, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that it is now accepting Keynote Proposals. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development cycles that produce software that is obsolete at launch. DevOps may be disruptive, but it is essential.
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
"There is a natural synchronization between the business models, the IoT is there to support ,” explained Brendan O'Brien, Co-founder and Chief Architect of Aria Systems, in this SYS-CON.tv interview at the 15th International Cloud Expo®, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
The BPM world is going through some evolution or changes where traditional business process management solutions really have nowhere to go in terms of development of the road map. In this demo at 15th Cloud Expo, Kyle Hansen, Director of Professional Services at AgilePoint, shows AgilePoint’s unique approach to dealing with this market circumstance by developing a rapid application composition or development framework.

ARMONK, N.Y., Nov. 20, 2014 /PRNewswire/ --  IBM (NYSE: IBM) today announced that it is bringing a greater level of control, security and flexibility to cloud-based application development and delivery with a single-tenant version of Bluemix, IBM's platform-as-a-service. The new platform enables developers to build ap...

An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
Building low-cost wearable devices can enhance the quality of our lives. In his session at Internet of @ThingsExpo, Sai Yamanoor, Embedded Software Engineer at Altschool, provided an example of putting together a small keychain within a $50 budget that educates the user about the air quality in their surroundings. He also provided examples such as building a wearable device that provides transit or recreational information. He then reviewed the resources available to build wearable devices at home including open source hardware, the raw materials required and the options available to power s...
The Internet of Things is not new. Historically, smart businesses have used its basic concept of leveraging data to drive better decision making and have capitalized on those insights to realize additional revenue opportunities. So, what has changed to make the Internet of Things one of the hottest topics in tech? In his session at @ThingsExpo, Chris Gray, Director, Embedded and Internet of Things, discussed the underlying factors that are driving the economics of intelligent systems. Discover how hardware commoditization, the ubiquitous nature of connectivity, and the emergence of Big Data a...
The Internet of Things promises to transform businesses (and lives), but navigating the business and technical path to success can be difficult to understand. In his session at @ThingsExpo, Sean Lorenz, Technical Product Manager for Xively at LogMeIn, demonstrated how to approach creating broadly successful connected customer solutions using real world business transformation studies including New England BioLabs and more.
We certainly live in interesting technological times. And no more interesting than the current competing IoT standards for connectivity. Various standards bodies, approaches, and ecosystems are vying for mindshare and positioning for a competitive edge. It is clear that when the dust settles, we will have new protocols, evolved protocols, that will change the way we interact with devices and infrastructure. We will also have evolved web protocols, like HTTP/2, that will be changing the very core of our infrastructures. At the same time, we have old approaches made new again like micro-services...
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
The Internet of Things is a misnomer. That implies that everything is on the Internet, and that simply should not be - especially for things that are blurring the line between medical devices that stimulate like a pacemaker and quantified self-sensors like a pedometer or pulse tracker. The mesh of things that we manage must be segmented into zones of trust for sensing data, transmitting data, receiving command and control administrative changes, and peer-to-peer mesh messaging. In his session at @ThingsExpo, Ryan Bagnulo, Solution Architect / Software Engineer at SOA Software, focused on desi...
Today’s enterprise is being driven by disruptive competitive and human capital requirements to provide enterprise application access through not only desktops, but also mobile devices. To retrofit existing programs across all these devices using traditional programming methods is very costly and time consuming – often prohibitively so. In his session at @ThingsExpo, Jesse Shiah, CEO, President, and Co-Founder of AgilePoint Inc., discussed how you can create applications that run on all mobile devices as well as laptops and desktops using a visual drag-and-drop application – and eForms-buildi...
"For over 25 years we have been working with a lot of enterprise customers and we have seen how companies create applications. And now that we have moved to cloud computing, mobile, social and the Internet of Things, we see that the market needs a new way of creating applications," stated Jesse Shiah, CEO, President and Co-Founder of AgilePoint Inc., in this SYS-CON.tv interview at 15th Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, data security and privacy.