Click here to close now.


Containers Expo Blog Authors: Tim Hinds, Blue Box Blog, Elizabeth White, SmartBear Blog, Wayne Ariola

Related Topics: @BigDataExpo, Java IoT, Microservices Expo, Containers Expo Blog, Agile Computing, @CloudExpo, Apache

@BigDataExpo: Article

Examining the True Cost of Big Data

As you start on your Big Data journey or project, be sure to ask what exactly the business requires

The good news about the Big Data market is that we generally all agree on the definition of Big Data, which has come to be known as data that has volume, velocity and variety where businesses need to collect, store, manage and analyze in order to derive business value or otherwise known as the "4 V's." However, the problem with such a broad definition is that it can mean different things to different people once you start to put some real values next to those V's.

Let's be honest, Volume can be a different thing to different organizations. To some it is anything above 10 terabytes of managed data in their BI environment and to others it is petabyte scale and nothing less. Likewise velocity can be multi-billions of daily records coming into the enterprise from various external and internal networks. When it really comes down to it, each business situation will be quite different not only from a size and speed perspective but also more important from the business use-case or requirement. A large bank's Big Data problem could be very different to that of an online retailer or an airline. If you compare what say a hospital is trying to do collecting and analyzing all the sensor patient data compared to a utilities provider running a smart-grid or a telecommunications operator. True, all could be categorized as machine generated or raw data but the exact type of data might be different not to mention the volume or growth rate. Probably the one unique common denominator across all aforementioned industries is that everyone is keeping the data for longer time-periods. No one is throwing it away - not even the detailed data.

The Many Cost Factors to Consider
Costs will of course vary depending on the individual allocated IT budget but regardless, how the company allocates IT budget dollars to new Big Data initiatives needs consideration. Let's face it, enterprise buyers didn't suddenly come into a bunch of newfound IT assets or line items on their budget and the current world economic situation would certainly not suggest so. More likely existing budgets are being re-allocated and instead of spending more on say existing traditional data warehouses or appliances, monies are being allocated to new projects running on open source projects including Apache Hadoop which promises both low cost, ease of scale not to mention the obvious best approach to managing and analyzing multi-structured data sets. The difficultly then arises how do you integrate or have your Hadoop environment co-exist with the established BI or DW environment that the business has grown to love and rely upon?

Leverage What You Already Have
Let's assume you have a data warehouse or data mart in place today and you already use various ETL or data movement tools and BI dashboard, analytics or reporting tools and you don't want to disrupt business users which could not only impacting performance levels but also training up on a new set of tools. In fact you already likely beholden to strict SLA's around response times for the various business reports and KPI's. However, at the same time the business is demanding access to new data sets in order to glean better insights either directly analyzing this data or co-mingling it with existing customer data. This could take the form of web-logs, click stream data or social media data from various interactive sites the business is now leveraging and tracking. The promise of impacting profit margins and gaining a competitive edge just cannot be avoided.

As we all know, traditional relational or columnar databases can't handle the unstructured data types so IT needs to rollout a different solution to satisfy the business demands. Evaluations can take many forms but typically will start with which Hadoop distribution, which NoSQL or NewSQL database and what query access tools in addition to MapReduce. It is certainly no easy task as there are a large number of technology solutions on the market today that claim to run on or with Hadoop providing MapReduce or SQL-like capabilities which all satisfy the requirement of managing volumes of unstructured data. Some are more mature than others; some proven and not all are low-cost. Open source on the surface looks very low cost but as soon as you require any level of support, which lets face it once it's live and relied upon as a business critical environment, you will need to allocate a line item on your budget. The Big Data line item won't just be one line as it will need to include all components required to properly rollout a Big Data solution to truly satisfy the business demands. Just like any other IT environment the obvious pieces will include: Software licensing and support, hardware, skilled dedicated resources, professional services and training and the dedicated time of business users to provide input on key requirements including specifying types of reports, queries and analysis which will naturally change and evolve over time.

Big Data Costs Can Quickly Creep Up
In terms of the hardware expenditure required to manage the new Big Data set, you may start out with a Hadoop cluster of say 10 nodes and yes that is certainly manageable but if your data velocity is significant, you can quickly reach 100+ nodes and now you will face a number of other expenses including additional headcount and skilled resources to manage the environment proactively in addition to tools for managing the cluster including system management and alerting and potentially add-on software which can vary by business use-case but might cover real-time analytics against streaming data for say fraud detection or detection of unusual patterns. You may also need a business tool to provide a front-end GUI dashboard to track specific KPIs or data visualization tools so business users can quickly understand what is going on. Very quickly the costs become less about the storage and hardware and more around the software that focuses on getting the most value from this newly collected data set.

There is no denying the fact that Big Data presents great new opportunities but reaching the point of a quantifiable ROI in a fast time frame is still a very real challenge. Everyone is talking about Big Data and all the innovative technology approaches to tackling it but it is still difficult to find lots of business success stories within any one-industry sector. It's still fairly immature but the good news is that its moving at a much faster pace than any other IT project today and certainly our data warehouse and BI forefathers have provided lessons learned over the past two decades.

Big Data Is Big Business but It Comes with Strict Requirements
If we want to examine more closely the main areas of expenditure for a Big Data project, it is probably best to look at it through the lens of a specific type of business and use-case. Let's take a large financial institution that has a number of existing traditional data warehouse / BI environments but because the business doesn't want to throw any data away (well let's face it regulations don't allow that for a number of years) and realistically the business wants to retain specific data sets for ongoing trending and analysis. This includes examining questions such as "what constitutes a low-risk client based on spending behavior patterns over a specific time period cross-referenced with customer demographics" which will help the institution better target a particular segment of the market.

Given the IT budget doesn't allow for increased spend that correlates with data growth rates, they need to seriously reduce costs and so decide to go the route of a Hadoop-based environment given its promise for low-cost scale and the fact that it can provide insights into customer patterns by capturing semi- and unstructured data. Front-ending the warehouse with a dedicated Hadoop cluster is the preferred architectural approach but the business users still want access to both the Hadoop environment and the existing traditional data warehouse environment.

Given we are talking about a financial institution, the question of security and availability quickly come to the top of the requirements list. At the same time, if business users want to access that data, SQL query access and using the current BI tool against that new set of data is also a requirement. If you can avoid having to the move large chunks of data on a frequent basis from one to the other, it will not only reduce costs but also latency. In an ideal world, being able to leverage the skill sets you already have and avoiding duplication of work is key.

Below is a quick table outlining the main cost factors to be considered and a set of comments against each of these areas that could reduce costs.


Big Data on Hadoop Cost Factors

Key Consideration to drive down cost



Look at databases that provide data compression to yield storage savings (better than GZip or LZO).


Hardware (Nodes)

Granular data compression at database level will reduce nodes over time.


Data Analytics - Skilled Resources

Examine technology solutions that provide standard SQL or BI tool access in addition to MapReduce (Pig etc.)


Cluster management - Skilled Resources

Leverage existing Dev-operations staff if you deploy a SQL-compliant data environment



Look for database solutions that provide built-in security permissions and access.


Availability / DR

Consider a data management environment that doesn't require additional tools for replication.



Consider solutions where you don't need to retrain or hire all new resources. Leverage what you have (standard SQL-skilled DBAs)

Summary: Consider All Factors and Get Business Buy-in Quickly
Big Data is fundamentally a business problem. If you begin with the question of "what is the business trying to achieve by collecting, storing and analyzing this new set of data...", you will start down the right path to realizing business gains. Whether you outsource the initiative or bring in external consultants and vendors to manage the project, the same questions will arise and in order to leverage what you already have which includes both existing IT environments and skills, you will be better able to contain costs.

Furthermore, we all love the promise of new innovative technologies including Hadoop and MapReduce but without leveraging tried and tested standards we have come to love and respect, it doesn't make a whole lot of sense from both a technical or economic sense. As you start on your Big Data journey or project, be sure to ask what exactly the business requires and how can you leverage what you already have today. We all know, getting business user buy-in and success is half the battle to a successful rollout.

More Stories By John Bantleman

John Bantleman, CEO of RainStor, has more than 20 years’ experience in the management of software companies. Prior to overseeing RainStor, he transformed LBMS into a $45 million business prior to its successful NASDAQ flotation in 1997. Today’s LBMS’ technology is now part of CA’s product portfolio. The following year John was instrumental in the launch of Evolve, and drove the company through to a successful IPO on NASDAQ.

Returning to the UK in 2003, John spent 12 months working on the advisory boards of venture capital organizations such as Apax Partners. He joined RainStor Inc. as Chairman in 2004 and became CEO at the start of 2007 and relocated back to the US to head-up worldwide operations in 2009.

Comments (3) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.

Most Recent Comments
Vikas.Deolaliker 09/21/12 06:49:00 PM EDT

Great article. Another data point, the IT budget is up only 4% in 2013 over 2012, so don't expect everyone to rush into Bigdata.

The fourth "V" is visualization. If you cannot render the analysis in a intuitive way, there is no value in that analysis. In fact, visualization should be the first step in design of a bigdata system - it helps trim down the architectural bloat into something that is within budget and useful.

Elad Israeli 09/19/12 06:07:00 PM EDT

Fascinating post. Still waiting for someone to crack the nut that is Big Data Analytics.

douglaney 08/29/12 03:36:00 PM EDT

Great piece John. Excellent detail. Thought you and your readers might be interested in where the "3Vs" of big data originated--in a Gartner piece I authored over 11 years ago. I recently unearthed a copy so folks to refer to and cite it.

Doug Laney, VP Research, Gartner, @doug_laney

@ThingsExpo Stories
The broad selection of hardware, the rapid evolution of operating systems and the time-to-market for mobile apps has been so rapid that new challenges for developers and engineers arise every day. Security, testing, hosting, and other metrics have to be considered through the process. In his session at Big Data Expo, Walter Maguire, Chief Field Technologist, HP Big Data Group, at Hewlett-Packard, will discuss the challenges faced by developers and a composite Big Data applications builder, focusing on how to help solve the problems that developers are continuously battling.
Nowadays, a large number of sensors and devices are connected to the network. Leading-edge IoT technologies integrate various types of sensor data to create a new value for several business decision scenarios. The transparent cloud is a model of a new IoT emergence service platform. Many service providers store and access various types of sensor data in order to create and find out new business values by integrating such data.
There are so many tools and techniques for data analytics that even for a data scientist the choices, possible systems, and even the types of data can be daunting. In his session at @ThingsExpo, Chris Harrold, Global CTO for Big Data Solutions for EMC Corporation, will show how to perform a simple, but meaningful analysis of social sentiment data using freely available tools that take only minutes to download and install. Participants will get the download information, scripts, and complete end-to-end walkthrough of the analysis from start to finish. Participants will also be given the pract...
WebRTC: together these advances have created a perfect storm of technologies that are disrupting and transforming classic communications models and ecosystems. In his session at WebRTC Summit, Cary Bran, VP of Innovation and New Ventures at Plantronics and PLT Labs, will provide an overview of this technological shift, including associated business and consumer communications impacts, and opportunities it may enable, complement or entirely transform.
SYS-CON Events announced today that Dyn, the worldwide leader in Internet Performance, will exhibit at SYS-CON's 17th International Cloud Expo®, which will take place on November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Dyn is a cloud-based Internet Performance company. Dyn helps companies monitor, control, and optimize online infrastructure for an exceptional end-user experience. Through a world-class network and unrivaled, objective intelligence into Internet conditions, Dyn ensures traffic gets delivered faster, safer, and more reliably than ever.
WebRTC services have already permeated corporate communications in the form of videoconferencing solutions. However, WebRTC has the potential of going beyond and catalyzing a new class of services providing more than calls with capabilities such as mass-scale real-time media broadcasting, enriched and augmented video, person-to-machine and machine-to-machine communications. In his session at @ThingsExpo, Luis Lopez, CEO of Kurento, will introduce the technologies required for implementing these ideas and some early experiments performed in the Kurento open source software community in areas ...
Too often with compelling new technologies market participants become overly enamored with that attractiveness of the technology and neglect underlying business drivers. This tendency, what some call the “newest shiny object syndrome,” is understandable given that virtually all of us are heavily engaged in technology. But it is also mistaken. Without concrete business cases driving its deployment, IoT, like many other technologies before it, will fade into obscurity.
Today air travel is a minefield of delays, hassles and customer disappointment. Airlines struggle to revitalize the experience. GE and M2Mi will demonstrate practical examples of how IoT solutions are helping airlines bring back personalization, reduce trip time and improve reliability. In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect with GE, and Dr. Sarah Cooper, M2Mi's VP Business Development and Engineering, will explore the IoT cloud-based platform technologies driving this change including privacy controls, data transparency and integration of real time context w...
The IoT market is on track to hit $7.1 trillion in 2020. The reality is that only a handful of companies are ready for this massive demand. There are a lot of barriers, paint points, traps, and hidden roadblocks. How can we deal with these issues and challenges? The paradigm has changed. Old-style ad-hoc trial-and-error ways will certainly lead you to the dead end. What is mandatory is an overarching and adaptive approach to effectively handle the rapid changes and exponential growth.
Who are you? How do you introduce yourself? Do you use a name, or do you greet a friend by the last four digits of his social security number? Assuming you don’t, why are we content to associate our identity with 10 random digits assigned by our phone company? Identity is an issue that affects everyone, but as individuals we don’t spend a lot of time thinking about it. In his session at @ThingsExpo, Ben Klang, Founder & President of Mojo Lingo, will discuss the impact of technology on identity. Should we federate, or not? How should identity be secured? Who owns the identity? How is identity ...
The buzz continues for cloud, data analytics and the Internet of Things (IoT) and their collective impact across all industries. But a new conversation is emerging - how do companies use industry disruption and technology enablers to lead in markets undergoing change, uncertainty and ambiguity? Organizations of all sizes need to evolve and transform, often under massive pressure, as industry lines blur and merge and traditional business models are assaulted and turned upside down. In this new data-driven world, marketplaces reign supreme while interoperability, APIs and applications deliver un...
Electric power utilities face relentless pressure on their financial performance, and reducing distribution grid losses is one of the last untapped opportunities to meet their business goals. Combining IoT-enabled sensors and cloud-based data analytics, utilities now are able to find, quantify and reduce losses faster – and with a smaller IT footprint. Solutions exist using Internet-enabled sensors deployed temporarily at strategic locations within the distribution grid to measure actual line loads.
The Internet of Everything is re-shaping technology trends–moving away from “request/response” architecture to an “always-on” Streaming Web where data is in constant motion and secure, reliable communication is an absolute necessity. As more and more THINGS go online, the challenges that developers will need to address will only increase exponentially. In his session at @ThingsExpo, Todd Greene, Founder & CEO of PubNub, will explore the current state of IoT connectivity and review key trends and technology requirements that will drive the Internet of Things from hype to reality.
The Internet of Things (IoT) is growing rapidly by extending current technologies, products and networks. By 2020, Cisco estimates there will be 50 billion connected devices. Gartner has forecast revenues of over $300 billion, just to IoT suppliers. Now is the time to figure out how you’ll make money – not just create innovative products. With hundreds of new products and companies jumping into the IoT fray every month, there’s no shortage of innovation. Despite this, McKinsey/VisionMobile data shows "less than 10 percent of IoT developers are making enough to support a reasonably sized team....
You have your devices and your data, but what about the rest of your Internet of Things story? Two popular classes of technologies that nicely handle the Big Data analytics for Internet of Things are Apache Hadoop and NoSQL. Hadoop is designed for parallelizing analytical work across many servers and is ideal for the massive data volumes you create with IoT devices. NoSQL databases such as Apache HBase are ideal for storing and retrieving IoT data as “time series data.”
Today’s connected world is moving from devices towards things, what this means is that by using increasingly low cost sensors embedded in devices we can create many new use cases. These span across use cases in cities, vehicles, home, offices, factories, retail environments, worksites, health, logistics, and health. These use cases rely on ubiquitous connectivity and generate massive amounts of data at scale. These technologies enable new business opportunities, ways to optimize and automate, along with new ways to engage with users.
The IoT is upon us, but today’s databases, built on 30-year-old math, require multiple platforms to create a single solution. Data demands of the IoT require Big Data systems that can handle ingest, transactions and analytics concurrently adapting to varied situations as they occur, with speed at scale. In his session at @ThingsExpo, Chad Jones, chief strategy officer at Deep Information Sciences, will look differently at IoT data so enterprises can fully leverage their IoT potential. He’ll share tips on how to speed up business initiatives, harness Big Data and remain one step ahead by apply...
There will be 20 billion IoT devices connected to the Internet soon. What if we could control these devices with our voice, mind, or gestures? What if we could teach these devices how to talk to each other? What if these devices could learn how to interact with us (and each other) to make our lives better? What if Jarvis was real? How can I gain these super powers? In his session at 17th Cloud Expo, Chris Matthieu, co-founder and CTO of Octoblu, will show you!
SYS-CON Events announced today that ProfitBricks, the provider of painless cloud infrastructure, will exhibit at SYS-CON's 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. ProfitBricks is the IaaS provider that offers a painless cloud experience for all IT users, with no learning curve. ProfitBricks boasts flexible cloud servers and networking, an integrated Data Center Designer tool for visual control over the cloud and the best price/performance value available. ProfitBricks was named one of the coolest Clo...
As a company adopts a DevOps approach to software development, what are key things that both the Dev and Ops side of the business must keep in mind to ensure effective continuous delivery? In his session at DevOps Summit, Mark Hydar, Head of DevOps, Ericsson TV Platforms, will share best practices and provide helpful tips for Ops teams to adopt an open line of communication with the development side of the house to ensure success between the two sides.