Click here to close now.

Welcome!

Containers Expo Blog Authors: Michael Kanasoot, Liz McMillan, David Sprott, Pat Romanski, Rex Morrow, Datical

News Feed Item

ClearSign Demonstrates Novel Method to Improve Energy Efficiency in Turbines and Other Systems

Technique May Boost Turbine Efficiency and Increase Lifetime by More Effectively Cooling Blades

SEATTLE, WA -- (Marketwire) -- 10/11/12 -- ClearSign Combustion Corporation (NASDAQ: CLIR), an emerging leader in combustion and emissions control technology for industrial, commercial and utility markets, reported today that it has successfully demonstrated an experimental concept proof of a technique for cooling turbine blades that the Company believes may point the way to significant improvements in the design and performance of combustion turbines.

According to industry estimates, the combined annual market for both land-based natural gas turbines for power generation and jet engines for civil aviation is in excess of $40 billion annually. The Congressional Research Service stated that the use of gas turbines accounted for 19% of energy production in 1989, increasing to 39% in 2008, and projects this trend to continue for the next two decades. Turbomachinery Magazine's 2011 report projects that 11,480 land-based turbines will be delivered before 2019.

The market for aircraft jet engines is also projected to experience significant growth. General Electric, which accounts for approximately 50% of the global market, projects its current installed base of 26,000 engines to increase to over 45,000 by 2020.

Depending upon its size, a gas turbine running in single cycle mode can range from as little as 20% to as much as 45% efficiency. This is why small gains in energy efficiency are prized and sought after in the world of turbine engines.

Turbine efficiency is limited by the capacity of turbine blades and metal structures within the turbine to withstand high levels of sustained heat loading without suffering structural damage. In order to minimize mechanical stresses on the blades, turbines are designed so that hot combustion gases are cooled to well below their peak temperature before coming in contact with the rotor blades. Since the mechanical output of a turbine derives directly from the expansion of the gas as temperature is increased, cooling the hot inlet gases, while necessary to protect the blades, has the consequence of severely limiting turbine efficiency.

"If the blades can be cooled you're going to see a gain in efficiency," said ClearSign CEO Rick Rutkowski, "because you will be able to increase the peak temperature. The economic value of effective blade cooling is enormous since it translates directly into fuel savings for both jet engines and power generators. A gain of just one percent in efficiency is seen by industry experts as being very significant. We believe that it may be possible to realize gains of as much as a few percent in energy efficiency, if we can sufficiently cool the blade surfaces."

Currently, turbine designers employ "film-cooling" techniques to deliver cooling air to the blades in order to reduce heat buildup. However, shear forces from the high-speed rotation of the blades quickly pull this cooling air away.

The ClearSign blade-cooling concept involves electrically charging both the hot gas cloud and the turbine blades so that the hot gases are pushed away and cooling air is sandwiched between the charged blade and the gas cloud. The boundary layer of cool air effectively insulates the blade to reduce heat loading.

According to the Company, cooler turbine blades should also lengthen the life of the equipment by reducing metal fatigue and "creep" which eventually lead to failure of costly parts like turbine blades and guide vanes.

"We built this prototype system in order to demonstrate to prospective commercial partners that electrostatic forces can be used to push heat away from a surface and measurably reduce temperature," said ClearSign Chief Technology Officer Joe Colannino.

"We conducted our experiments using a stream of hot gas from a pre-mixed combustor to heat a stationary electrically conductive surface simulating a turbine blade. An array of sensors placed at various locations on the surface recorded operating temperatures. Both the gas cloud and the heat transfer surface were charged. Remarkably, we observed absolute temperature reductions approaching 160 Kelvin (290 Fahrenheit). Depending on the location along or near the blade surface, this represents electrically induced thermal rejection of 1% to 16% when the voltage is applied.

"We were especially pleased to see that the effect did not diminish with distance from the combustor: The gas cloud appears to maintain its charged state and continue to be repulsed by the electrostatic forces even at distances exceeding 15 times the flame length of the combustor source.

"While it's important to emphasize that this is an early experimental prototype, we regard these experiments as having been highly successful," Rutkowski added. "Our technique for rejecting heat from a charged surface functioned extremely well and yielded very positive results. There is much additional work to do to advance this technology toward commercialization and to continue to scale to real world operating conditions. We have devised an experimental program and described a business case in consultation with prospective customers and commercial partners. We expect subsequent developments will incorporate increases in gas flow rates, temperature and pressure and the transition from a stationary plate to rotary blades."

In addition to turbine blade cooling, ClearSign is investigating other ways in which electrostatic forces can be applied to simplify and improve turbine design and performance and to further increase fuel efficiency.

Dr. Robert Breidenthal, a professor at the University of Washington's Department of Aeronautics and Astronautics and a ClearSign technical advisor, will be presenting selected experimental results in his paper, "Turbine Blade Cooling Using Coulomb Repulsion," at the 2012 American Physical Society Division of Fluid Dynamics Annual Meeting. Since 1948, the DFD annual meeting has grown into one of the largest conferences in fluid dynamics, with 2800 attendees from all over the world. Information about the conference, which will be held November 18-20 in San Diego, can be found on the web at http://apsdfd2012.ucsd.edu

For further information about ClearSign, including our calendar of upcoming events and a recent feature article on Forbes.com, please visit www.clearsign.com or text "CLIR" to 90210.

About ClearSign Combustion Corporation

ClearSign Combustion Corporation designs and develops technologies that aim to improve key performance characteristics of combustion systems including energy efficiency, emissions control, and fuel flexibility and overall cost effectiveness. Our Electrodynamic Combustion Control™ (ECC™) platform technology improves control of flame shape and heat transfer and optimizes the complex chemical reactions that occur during combustion in order to minimize harmful emissions. For more information about the Company, please visit www.clearsign.com

Cautionary note on forward-looking statements

This press release includes forward-looking information and statements within the meaning of the Private Securities Litigation Reform Act of 1995 and the provisions of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. Except for historical information contained in this release, statements in this release may constitute forward-looking statements regarding our assumptions, projections, expectations, targets, intentions or beliefs about future events that are based on management's belief, as well as assumptions made by, and information currently available to, management. While we believe that our expectations are based upon reasonable assumptions, there can be no assurances that our goals and strategy will be realized. Numerous factors, including risks and uncertainties, may affect our actual results and may cause results to differ materially from those expressed in forward-looking statements made by us or on our behalf. Some of these factors include the acceptance of existing and future products, the impact of competitive products and pricing, general business and economic conditions, and other factors detailed in our Quarterly Report on Form 10-Q and other periodic reports filed with the SEC. We specifically disclaim any obligation to update or revise any forward-looking statement whether as a result of new information, future developments or otherwise.

More Stories By Marketwired .

Copyright © 2009 Marketwired. All rights reserved. All the news releases provided by Marketwired are copyrighted. Any forms of copying other than an individual user's personal reference without express written permission is prohibited. Further distribution of these materials is strictly forbidden, including but not limited to, posting, emailing, faxing, archiving in a public database, redistributing via a computer network or in a printed form.

@ThingsExpo Stories
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
SYS-CON Events announced today that MetraTech, now part of Ericsson, has been named “Silver Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. Ericsson is the driving force behind the Networked Society- a world leader in communications infrastructure, software and services. Some 40% of the world’s mobile traffic runs through networks Ericsson has supplied, serving more than 2.5 billion subscribers.
The Internet of Things is not only adding billions of sensors and billions of terabytes to the Internet. It is also forcing a fundamental change in the way we envision Information Technology. For the first time, more data is being created by devices at the edge of the Internet rather than from centralized systems. What does this mean for today's IT professional? In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists will addresses this very serious issue of profound change in the industry.
SYS-CON Events announced today that BMC will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. BMC delivers software solutions that help IT transform digital enterprises for the ultimate competitive business advantage. BMC has worked with thousands of leading companies to create and deliver powerful IT management services. From mainframe to cloud to mobile, BMC pairs high-speed digital innovation with robust IT industrialization – allowing customers to provide amazing user experiences with optimized IT per...
The Internet of Things is not new. Historically, smart businesses have used its basic concept of leveraging data to drive better decision making and have capitalized on those insights to realize additional revenue opportunities. So, what has changed to make the Internet of Things one of the hottest topics in tech? In his session at @ThingsExpo, Chris Gray, Director, Embedded and Internet of Things, discussed the underlying factors that are driving the economics of intelligent systems. Discover how hardware commoditization, the ubiquitous nature of connectivity, and the emergence of Big Data a...
The world is at a tipping point where the technology, the device and global adoption are converging to such a point that we will see an explosion of a world where smartphone devices not only allow us to talk to each other, but allow for communication between everything – serving as a central hub from which we control our world – MediaTek is at the heart of both driving this and allowing the markets to drive this reality forward themselves. The next wave of consumer gadgets is here – smart, connected, and small. If your ambitions are big, so are ours. In his session at @ThingsExpo, Jack Hu, D...
The 4th International Internet of @ThingsExpo, co-located with the 17th International Cloud Expo - to be held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA - announces that its Call for Papers is open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
SYS-CON Events announced today that DragonGlass, an enterprise search platform, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. After eleven years of designing and building custom applications, OpenCrowd has launched DragonGlass, a cloud-based platform that enables the development of search-based applications. These are a new breed of applications that utilize a search index as their backbone for data retrieval. They can easily adapt to new data sets and provide access to both structured and unstruc...
We’re entering a new era of computing technology that many are calling the Internet of Things (IoT). Machine to machine, machine to infrastructure, machine to environment, the Internet of Everything, the Internet of Intelligent Things, intelligent systems – call it what you want, but it’s happening, and its potential is huge. IoT is comprised of smart machines interacting and communicating with other machines, objects, environments and infrastructures. As a result, huge volumes of data are being generated, and that data is being processed into useful actions that can “command and control” thi...
As the Internet of Things unfolds, mobile and wearable devices are blurring the line between physical and digital, integrating ever more closely with our interests, our routines, our daily lives. Contextual computing and smart, sensor-equipped spaces bring the potential to walk through a world that recognizes us and responds accordingly. We become continuous transmitters and receivers of data. In his session at @ThingsExpo, Andrew Bolwell, Director of Innovation for HP's Printing and Personal Systems Group, discussed how key attributes of mobile technology – touch input, sensors, social, and ...
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo, June 9-11, 2015, at the Javits Center in New York City. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be
WebRTC defines no default signaling protocol, causing fragmentation between WebRTC silos. SIP and XMPP provide possibilities, but come with considerable complexity and are not designed for use in a web environment. In his session at @ThingsExpo, Matthew Hodgson, technical co-founder of the Matrix.org, discussed how Matrix is a new non-profit Open Source Project that defines both a new HTTP-based standard for VoIP & IM signaling and provides reference implementations.
Buzzword alert: Microservices and IoT at a DevOps conference? What could possibly go wrong? In this Power Panel at DevOps Summit, moderated by Jason Bloomberg, the leading expert on architecting agility for the enterprise and president of Intellyx, panelists will peel away the buzz and discuss the important architectural principles behind implementing IoT solutions for the enterprise. As remote IoT devices and sensors become increasingly intelligent, they become part of our distributed cloud environment, and we must architect and code accordingly. At the very least, you'll have no problem fil...
Almost everyone sees the potential of Internet of Things but how can businesses truly unlock that potential. The key will be in the ability to discover business insight in the midst of an ocean of Big Data generated from billions of embedded devices via Systems of Discover. Businesses will also need to ensure that they can sustain that insight by leveraging the cloud for global reach, scale and elasticity.
"People are a lot more knowledgeable about APIs now. There are two types of people who work with APIs - IT people who want to use APIs for something internal and the product managers who want to do something outside APIs for people to connect to them," explained Roberto Medrano, Executive Vice President at SOA Software, in this SYS-CON.tv interview at Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect at GE, and Ibrahim Gokcen, who leads GE's advanced IoT analytics, focused on the Internet of Things / Industrial Internet and how to make it operational for business end-users. Learn about the challenges posed by machine and sensor data and how to marry it with enterprise data. They also discussed the tips and tricks to provide the Industrial Internet as an end-user consumable service using Big Data Analytics and Industrial Cloud.
Building low-cost wearable devices can enhance the quality of our lives. In his session at Internet of @ThingsExpo, Sai Yamanoor, Embedded Software Engineer at Altschool, provided an example of putting together a small keychain within a $50 budget that educates the user about the air quality in their surroundings. He also provided examples such as building a wearable device that provides transit or recreational information. He then reviewed the resources available to build wearable devices at home including open source hardware, the raw materials required and the options available to power s...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
We certainly live in interesting technological times. And no more interesting than the current competing IoT standards for connectivity. Various standards bodies, approaches, and ecosystems are vying for mindshare and positioning for a competitive edge. It is clear that when the dust settles, we will have new protocols, evolved protocols, that will change the way we interact with devices and infrastructure. We will also have evolved web protocols, like HTTP/2, that will be changing the very core of our infrastructures. At the same time, we have old approaches made new again like micro-services...
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...