Welcome!

Virtualization Authors: Pat Romanski, Elizabeth White, Ignacio M. Llorente, Andrew Phillips, Brian Vandegrift

Related Topics: Virtualization, Java, SOA & WOA, Open Source, Cloud Expo

Virtualization: Article

Considerations for SSD Deployments

SSD is a great technology, but your best value from it will come when you deploy it most efficiently

Legacy storage architectures do not perform very efficiently in virtual computing environments. The very random, very write-intensive I/O patterns generated by virtual hosts drive storage costs up as enterprises either add spindles or look to newer storage technologies like solid state disk (SSD) to address the IOPS shortfall.

SSD costs are coming down, but they are still significantly higher than spinning disk costs. When enterprises do consider SSD, how it is used and where it is placed in the virtual infrastructure can make a big difference in how much enterprises have to spend to meet their performance requirements. It can also impose certain operational limitations that may or may not be issues in specific environments.

Some of the key considerations that need to be taken into account are SSD placement (in the host or in the SAN), high availability/failover requirements, caching vs logging architectures, and the value of preserving existing investments vs rip and replace investments that promise storage hardware specifically designed for virtual environments.

SSD Placement
There are two basic locations to place SSD, each of which offers its own pros and cons. Host-based SSD will generally offer the lowest storage latencies, particularly if the SSD is located on PCIe cards. In non-clustered environments where it is clear that IOPS and storage latencies are the key performance problems, these types of devices can be very valuable. In most cases, they will remove storage as the performance problem.

But don't necessarily expect that in your environment, these devices will deliver their rated IOPS directly to your applications. In removing storage as the bottleneck, system performance will now be determined by whatever the next bottleneck in the system is. That could be CPU, memory, operating system, or any number of other potential issues. This phenomenon is referred to as Amdahl's Law.

What you probably care about are application IOPS. Test the devices you're considering in your environment before purchase, so you know exactly the level of performance gain they will provide to you. Then you can make a more informed decision about whether or not you can cost justify them for use with your workloads. Paying for performance you can't use is like buying a Ferrari for use on America's interstate system - you may never get out of second gear.

Raw SSD technology generally can provide blazingly fast read performance. Write performance, however, varies depending on whether you are writing randomly or sequentially. The raw technical specs on many SSD devices indicate that sequential write performance may be half that of read performance, and random write performance may be half again as slow. Write latencies may also not be deterministic because of how SSD devices manage the space they are writing to. Many SSD vendors are combining software and other infrastructure around their SSD devices to address some of these issues. If you're looking at SSD, look to the software it's packaged with to make sure the SSD capacity you're buying can be used most efficiently.

Host-based SSD introduces failover limitations. If you have implemented a product like VMware HA in your environment to automatically recover failed nodes, any data sitting in a host-based SSD device that has not been written through to shared storage will not be available on recovery. This can lead to data loss on recovery - something that may or may not be an issue in your environment. Even though SSD is non-volatile storage, if the node it is sitting in is down, you can't get to it. You can get to it after that node is recovered, but the issue here is whether or not you can automatically fail over and have access to it.

Because of this issue, most host-based SSD products implement what is called a "write-through" cache, which means that they don't acknowledge writes at SSD latencies, they actually write them through to shared disk and then send the write acknowledgement back from there. Anything on shared disk can be potentially recovered by any other node in the cluster, ensuring that no committed data is unavailable on failover. But what this means is that you won't get any write performance improvements from SSD, just better read performance.

What does your workload look like in terms of read vs write percentages? Most virtual environments are very write intensive, much more so than they ever were in physical environments, and virtual desktop infrastructure (VDI) environments can be as much as 90% writes when operating in steady state mode. If write performance is your problem, host-based SSD with a write-through cache may not help very much in the big picture.

SAN-based SSD, on the other hand, can support failover without data loss, and if implemented with a write-back cache can provide write performance speedups as well. But many implementations available for use with SAN arrays are really only designed to speed up reads. Check carefully as you consider SSD to understand how it is implemented, and how well that maps to the actual performance requirements in your environment.

Caching vs Logging Architectures
Most SSD, wherever it is implemented, is used as a cache. Sizing guidelines for caches start with the cache as a percentage of the back-end storage it is front-ending. Generally the cache needs to be somewhere between 3% to 6% of the back-end storage, so larger data store capacities require larger caches. For example, 20TB of back-end data might require 1TB of SSD cache (5%).

Caches are generally just speeding up reads, but if you are working with a write-back cache, then the cache will have to be split between SSD capacity used to speed up reads and SSD capacity used to speed up writes. Everything else being equal in terms of performance requirements, write-back caches will have to be larger than write-through caches, but will provide more balanced performance gains (across both reads and writes).

Logging architectures, by definition, speed up writes, making them a good fit for write-intensive workloads like those found in virtual computing environments. Logs provide write performance gains by taking the very random workload and essentially removing the randomness from it by writing it sequentially to a log, acknowledging the writes from there, then asynchronously de-staging them to a shared storage pool. This means that the same SSD device used in a log vs used in a cache will be faster, assuming some randomness to the workload. The write performance the guest VMs see is the performance of the log device operating in sequential write mode almost all the time, and it can result in write performance improvements of up to 10x (relative to that same device operating in the random mode it would normally be operating in). And a log provides write performance improvements for all writes from all VMs all the time. (What's also interesting is that if you are getting 10x the IOPS from your current spinning disk, given Amdahl's Law, you may not even need to purchase SSD to remove storage as the performance bottleneck.)

Logs are very small (10GB or so) and are dedicated to a host, while the shared storage pool is accessible to all nodes in a cluster and primarily handles read requests. In a 20 node cluster with 20TB of shared data, you would need 200GB for the logs (10GB x 20 hosts) vs the 1TB you would need if SSD was used as a cache. Logs are much more efficient than caches for write performance improvements, resulting in lower costs.

If logs are located on SAN-based SSD, you not only get the write performance improvements, but this design fully supports node failover without data loss, a very nice differentiator from write-through cache implementations.

But what about read performance? This is where caches excel, and a write log doesn't seem to address that. That's true, and why it's important to combine a logging architecture with storage tiering. Any SSD capacity not used by the logs can be configured into a fast tier 0, which will provide the read performance improvements for any data residing in that tier. The bottom line here is that you can get better overall storage performance improvements from a "log + tiering" design than you can from a cache design while using 50% - 90% less high performance device (in this case, SSD) capacity. In our example above, if you buy a 256GB SAN-based SSD device and use it in a 20 node cluster, you'll get SSD sequential write performance for every write all the time, and have 56GB left over to put into a tier 0. Compare that to buying 1TB+ of cache capacity at SSD prices.

With single image management technology like linked clones or other similar implementations, you can lock your VM templates into this tier, and very efficiently gain read performance improvements against the shared blocks in those templates for all child VMs all the time. Single image management technology can help make the use of SSD capacity more efficient in either a cache or a log architecture, so don't overlook it as long as it is implemented in a way that does not impinge upon your storage performance.

Purpose-Built Storage Hardware
There are some interesting new array designs that leverage SSD, sometimes in combination with some of the other technologies mentioned above (log architectures, storage tiering, single image manage-ment, spinning disk). Designed specifically with the storage performance issues in virtual environments in mind, there is no doubt that these arrays can outperform legacy arrays. But for most enterprises, that may not be the operative question.

It's rare that an enterprise doesn't already have a sizable investment in storage. Many of these existing arrays support SSD, which can be deployed in a SAN-based cache or fast tier. It's much easier, and potentially much less disruptive and expensive if existing storage investments could be leveraged to address the storage performance issues in virtual environments. It's also less risky, since most of the hot new "virtual computing-aware" arrays and appliances are built by startups, not proven vendors. If there are pure software-based options to consider that support heterogeneous storage hardware and can address the storage issues common in virtual computing environments, allowing you to potentially take advantage of SSD capacity that fits into your current arrays, this could be a simpler, more cost-effective, and less risky option than buying from a storage startup. But only, of course, if it adequately resolves your performance problem.

The Take-Away
If there's one point you should take away from this article, it's that just blindly throwing SSD at a storage performance problem in virtual computing environments is not going to be a very efficient or cost-effective way to address your particular issues. Consider how much more performance you need, whether you need it on reads, writes, or both, whether you need to failover without data loss, and whether preserving existing storage hardware investments is important to you. SSD is a great technology, but your best value from it will come when you deploy it most efficiently.

More Stories By Eric Burgener

Eric Burgener is vice president product management at Virsto Software. He has worked on emerging technologies for almost his entire career, with early stints at pioneering companies such as Tandem, Pyramid, Sun, Veritas, ConvergeNet, Mendocino, and Topio, among others, on fault tolerance and high availability, replication, backup, continuous data protection, and server virtualization technologies.

Over the last 25 years Eric has worked across a variety of functional areas, including sales, product management, marketing, business development, and technical support, and also spent time as an Executive in Residence with Mayfield and a storage industry analyst at Taneja Group. Before joining Virsto, he was VP of Marketing at InMage.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device experiences grounded in people's real needs and desires.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.
SYS-CON Events announced today that Windstream, a leading provider of advanced network and cloud communications, has been named “Silver Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. Windstream (Nasdaq: WIN), a FORTUNE 500 and S&P 500 company, is a leading provider of advanced network communications, including cloud computing and managed services, to businesses nationwide. The company also offers broadband, phone and digital TV services to consumers primarily in rural areas.
"There is a natural synchronization between the business models, the IoT is there to support ,” explained Brendan O'Brien, Co-founder and Chief Architect of Aria Systems, in this SYS-CON.tv interview at the 15th International Cloud Expo®, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The major cloud platforms defy a simple, side-by-side analysis. Each of the major IaaS public-cloud platforms offers their own unique strengths and functionality. Options for on-site private cloud are diverse as well, and must be designed and deployed while taking existing legacy architecture and infrastructure into account. Then the reality is that most enterprises are embarking on a hybrid cloud strategy and programs. In this Power Panel at 15th Cloud Expo (http://www.CloudComputingExpo.com), moderated by Ashar Baig, Research Director, Cloud, at Gigaom Research, Nate Gordon, Director of T...