Click here to close now.

Welcome!

Containers Expo Blog Authors: Rex Morrow, Datical, Liz McMillan, Elizabeth White, Pat Romanski, John Wetherill

Blog Feed Post

It's On: Stacks versus Flows

#OpenStack #CloudStack #OpenFlow #SDN It's a showdown of model versus control – or is it?

 

stack-vs-flow

There's a lot of noise about "wars" in the networking world these days. OpenStack versus CloudStack versus OpenFlow-based SDN.

But while there are definitely aspects of "stacks" that share similarities with "flows", they are not the same model and ultimately they aren't even necessarily attempting to solve the same problems.

Understanding the two models and what they're intended to do can go a long way toward resolving any perceived conflicts.

The Stack Model

Stack models, such as CloudStack and OpenStack, are more accurately placed in the category of "cloud management frameworks" because they are designed with provisioning and management of the infrastructure services that comprise a cloud computing (or highly dynamic) environment.

Stacks are aptly named as they attempt to provide management and specifically automation of provisioning for the complete network stack. Both CloudStack and OpenStack, along with Eucalyptus and Amazon and VMware vCloud, provide a framework API that can (ostensibly) be used to provision infrastructure services irrespective of vendor implementation. The vision is (or should be) to enable implementers (whether service provider or enterprise) to be able to switch out architectural elements (routers, switches, hypervisors, load balancers, etc… ) transparently*. That is, moving from Dell to HP to Cisco (or vice-versa) as an environment's switching fabric should not be disruptive. Physical changes should be able to occur without impacting the provisioning and management of the actual services provided by the infrastructure.

And yes, such a strategy should also allow heterogeneity of infrastructure.

In many ways, such "stacks" are the virtualization of the data center, enabling abstraction of the actual implementation from the configuration and automation of the hardware (or software) elements. This, more than anything, is what enables a comparison with flow-based models.

The Flow Model

Flow-based models, in particular OpenFlow-based SDN, also abstracts implementation from configuration by decoupling the control plane from the data plane. This allows any OpenFlow-enabled device (mostly switches today, as SDN and OpenFlow focus on network layers) to be configured and managed via a centralized controller using a common API.

Flows are "installed" or "inserted" into OpenFlow-enabled elements via OpenFlow, an open protocol designed for this purpose, and support real-time updates that enable on-demand optimization or fault isolation of flows through the network. OpenFlow and SDN are focused on managing the flow of traffic through a network. 

Flow-based models purport to offer the same benefits as a stack model in terms of heterogeneity and interoperability. Moving from one OpenFlow-enabled switch to another (or mixing and matching) should ostensibly have no impact on the network whatsoever.

What flow-based models offer above and beyond a stack model is extensibility. OpenFlow-based SDN models using a centralized controller also carry with it the premise of being able to programmatically add new services to the network without vendor assistance. "Applications" deployed on an SDN controller platform (for lack of a better term) can extend existing services or add new ones and there is no need to change anything in the network fabric, because ultimately every "application" distills flows into a simple forwarding decision that can then be applied like a pattern to future flows by the switches.

The Differences

This is markedly different from the focus of a stack, which is on provisioning and management, even though both may be occurring in real-time. While it's certainly the case that through the CloudStack API you can create or delete port forwarding rules on a firewall, these actions are pushed (initiated) external to the firewall. It is not the case that the firewall receives a packet and asks the cloud framework for the appropriate action, which is the model in play for a switch in an OpenFlow-based SDN.

Another (relatively unmentioned but important) distinction is who bears responsibility for integration. A stack-based model puts the onus on the stack to integrate (via what are usually called "plug-ins" or "drivers") with the component's existing API (assuming one exists). A flow-based model requires the vendor to take responsibility for enabling OpenFlow support natively. Obviously the ecosystem of available resources to perform integration is a magnitude higher with a stack model than with a flow model. While vendors are involved in development of drivers/plug-ins for stacks now, the impact on the product itself is minimal, if any at all, because the integration occurs external to the component. Enabling native OpenFlow support on components requires a lot more internal resources be directed at such a project.

Do these differences make for an either-or choice?

Actually, they don't. The models are not mutually exclusive and, in fact, might be used in conjunction with one another quite well. A stack based approach to provisioning and management might well be complemented by an OpenFlow SDN in which flows through the network can be updated in real time or, as is often proffered as a possibility, the deployment of new protocols or services within the network.

The War that Isn't

While there certainly may be a war raging amongst the various stack models, it doesn't appear that a war between OpenFlow and *-Stack is something that's real or ever will be The two foci are very different, and realistically the two could easily be deployed in the same network and solve multiple problems. Network resources may be provisioned and initially configured via a stack but updated in real-time or extended by an SDN controller, assuming such network resources were OpenFlow-enabled in the first place.

 

* That's the vision (and the way it should be) at least. Reality thus far is that the OpenStack API doesn't support most network elements above L3 yet, and CloudStack is tightly coupling API calls to components, rendering this alleged benefit well, not a benefit at all, at least at L4 and above. 


Read the original blog entry...

More Stories By Lori MacVittie

Lori MacVittie is responsible for education and evangelism of application services available across F5’s entire product suite. Her role includes authorship of technical materials and participation in a number of community-based forums and industry standards organizations, among other efforts. MacVittie has extensive programming experience as an application architect, as well as network and systems development and administration expertise. Prior to joining F5, MacVittie was an award-winning Senior Technology Editor at Network Computing Magazine, where she conducted product research and evaluation focused on integration with application and network architectures, and authored articles on a variety of topics aimed at IT professionals. Her most recent area of focus included SOA-related products and architectures. She holds a B.S. in Information and Computing Science from the University of Wisconsin at Green Bay, and an M.S. in Computer Science from Nova Southeastern University.

@ThingsExpo Stories
Buzzword alert: Microservices and IoT at a DevOps conference? What could possibly go wrong? In this Power Panel at DevOps Summit, moderated by Jason Bloomberg, the leading expert on architecting agility for the enterprise and president of Intellyx, panelists will peel away the buzz and discuss the important architectural principles behind implementing IoT solutions for the enterprise. As remote IoT devices and sensors become increasingly intelligent, they become part of our distributed cloud environment, and we must architect and code accordingly. At the very least, you'll have no problem fil...
"People are a lot more knowledgeable about APIs now. There are two types of people who work with APIs - IT people who want to use APIs for something internal and the product managers who want to do something outside APIs for people to connect to them," explained Roberto Medrano, Executive Vice President at SOA Software, in this SYS-CON.tv interview at Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
Almost everyone sees the potential of Internet of Things but how can businesses truly unlock that potential. The key will be in the ability to discover business insight in the midst of an ocean of Big Data generated from billions of embedded devices via Systems of Discover. Businesses will also need to ensure that they can sustain that insight by leveraging the cloud for global reach, scale and elasticity.
The 4th International Internet of @ThingsExpo, co-located with the 17th International Cloud Expo - to be held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA - announces that its Call for Papers is open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect at GE, and Ibrahim Gokcen, who leads GE's advanced IoT analytics, focused on the Internet of Things / Industrial Internet and how to make it operational for business end-users. Learn about the challenges posed by machine and sensor data and how to marry it with enterprise data. They also discussed the tips and tricks to provide the Industrial Internet as an end-user consumable service using Big Data Analytics and Industrial Cloud.
Building low-cost wearable devices can enhance the quality of our lives. In his session at Internet of @ThingsExpo, Sai Yamanoor, Embedded Software Engineer at Altschool, provided an example of putting together a small keychain within a $50 budget that educates the user about the air quality in their surroundings. He also provided examples such as building a wearable device that provides transit or recreational information. He then reviewed the resources available to build wearable devices at home including open source hardware, the raw materials required and the options available to power s...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
We certainly live in interesting technological times. And no more interesting than the current competing IoT standards for connectivity. Various standards bodies, approaches, and ecosystems are vying for mindshare and positioning for a competitive edge. It is clear that when the dust settles, we will have new protocols, evolved protocols, that will change the way we interact with devices and infrastructure. We will also have evolved web protocols, like HTTP/2, that will be changing the very core of our infrastructures. At the same time, we have old approaches made new again like micro-services...
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
Collecting data in the field and configuring multitudes of unique devices is a time-consuming, labor-intensive process that can stretch IT resources. Horan & Bird [H&B], Australia’s fifth-largest Solar Panel Installer, wanted to automate sensor data collection and monitoring from its solar panels and integrate the data with its business and marketing systems. After data was collected and structured, two major areas needed to be addressed: improving developer workflows and extending access to a business application to multiple users (multi-tenancy). Docker, a container technology, was used to ...
The true value of the Internet of Things (IoT) lies not just in the data, but through the services that protect the data, perform the analysis and present findings in a usable way. With many IoT elements rooted in traditional IT components, Big Data and IoT isn’t just a play for enterprise. In fact, the IoT presents SMBs with the prospect of launching entirely new activities and exploring innovative areas. CompTIA research identifies several areas where IoT is expected to have the greatest impact.
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, data security and privacy.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
The Internet of Things is not only adding billions of sensors and billions of terabytes to the Internet. It is also forcing a fundamental change in the way we envision Information Technology. For the first time, more data is being created by devices at the edge of the Internet rather than from centralized systems. What does this mean for today's IT professional? In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists will addresses this very serious issue of profound change in the industry.
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo, June 9-11, 2015, at the Javits Center in New York City. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be
Container frameworks, such as Docker, provide a variety of benefits, including density of deployment across infrastructure, convenience for application developers to push updates with low operational hand-holding, and a fairly well-defined deployment workflow that can be orchestrated. Container frameworks also enable a DevOps approach to application development by cleanly separating concerns between operations and development teams. But running multi-container, multi-server apps with containers is very hard. You have to learn five new and different technologies and best practices (libswarm, sy...
SYS-CON Events announced today that DragonGlass, an enterprise search platform, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. After eleven years of designing and building custom applications, OpenCrowd has launched DragonGlass, a cloud-based platform that enables the development of search-based applications. These are a new breed of applications that utilize a search index as their backbone for data retrieval. They can easily adapt to new data sets and provide access to both structured and unstruc...
The Internet of Things is a misnomer. That implies that everything is on the Internet, and that simply should not be - especially for things that are blurring the line between medical devices that stimulate like a pacemaker and quantified self-sensors like a pedometer or pulse tracker. The mesh of things that we manage must be segmented into zones of trust for sensing data, transmitting data, receiving command and control administrative changes, and peer-to-peer mesh messaging. In his session at @ThingsExpo, Ryan Bagnulo, Solution Architect / Software Engineer at SOA Software, focused on desi...