Welcome!

Virtualization Authors: Carmen Gonzalez, Trevor Parsons, Lori MacVittie, Keith Cawley, Jason Bloomberg

Related Topics: Cloud Expo, Java, SOA & WOA, Virtualization, Big Data Journal, SDN Journal

Cloud Expo: Blog Feed Post

Essential Cloud Computing Characteristics

According to NIST the cloud model is composed of five essential characteristics, three service models, & four deployment models

If you ask five different experts you will get maybe five different opinions what cloud computing is. And all five may be correct. The best definition of cloud computing that I have ever found is the National Institute of Standards and Technology Definition of Cloud Computing. According to NIST the cloud model is composed of five essential characteristics, three service models, and four deployment models. In this post I will look at the essential characteristics only, and compare to the traditional computing models; in future posts I will look at the service and deployment models.

Because computing always implies resources (CPU, memory, storage, networking etc.), the premise of cloud is an improved way to provision, access and manage those resources. Let's look at each essential characteristic of the cloud:

On-Demand Self-Service
Essentially what this means is that you (as a consumer of the resources) can provision the resources at any time you want to, and you can do this without assistance from the resource provider.

Here is an example. In the old days if your application needed additional computing power to support growing load, the process you normally used to go through is briefly as follows: call the hardware vendor and order new machines; once the hardware is received you need to install the Operating System, connect the machine to the network, configure  any firewall rules etc.; next, you need to install your application and add the machine to the pool of other machines that already handle the load for your application. This is a very simplistic view of the process but it still requires you to interact with many internal and external teams in order to complete it - those can be but are not limited to hardware vendors, IT administrators, network administrators, database administrators, operations etc. As a result it can take weeks or even months to get the hardware ready to use.

Thanks to the cloud computing though you can reduce this process to minutes. All this lengthy process comes to a click of a button or a call to the provider's API and you can have the additional resources available within minutes without. Why is this important?

Because in the past the process involved many steps and usually took months, application owners often used to over provision the environments that host their application. Of course this results in huge capital expenditures at the beginning of the project, resource underutilization throughout the project, and huge losses if the project doesn't succeed. With cloud computing though you are in control and you can provision only enough resources to support your current load.

Broad Network Access
Well, this is not something new - we've had the Internet for more than 20 years already and the cloud did not invent this. And although NIST talks that the cloud promotes the use of heterogeneous clients (like smartphones, tablets etc.) I do think this would be possible even without the cloud. However there is one important thing that in my opinion  the cloud enabled that would be very hard to do with the traditional model. The cloud made it easier to bring your application closer to your users around the world. "What is the difference?", you will ask. "Isn't it that the same as Internet or the Web?" Yes and no. Thanks to the Internet you were able to make your application available to users around the world but there were significant differences in the user experience in different parts of the world. Let's say that your company is based on California and you had a very popular application with millions of users in US. Because you are based in California all servers that host your application are either in your basement or in a datacenter that is nearby so that you can easily go and fix any hardware issues that may occur. Now, think about the experience that your users will get across the country! People from East Coast will see slower response times and possibly more errors than people from the West. If you wanted to expand globally then this problems will be amplified. The way to solve this issue was to deploy servers on the East Cost and in any other part of the world that you want to expand to.

With cloud computing though you can just provision new resources in the region you want to expand to, deploy your application and start serving your users.

It again comes to the cost that you incur by deploying new data centers around the world versus just using resources on demand and releasing them if you are not successful. Because the cloud is broadly accessible you can rely on having the ability to provision resources in different parts of the world.

Resource Pooling
One can argue whether resource pooling is good or bad. The part that brings most concerns among users is the colocation of application on the same hardware or on the same virtual machine. Very often you can hear that this compromises security, can impact your application's performance and even bring it down. Those have been real concerns in the past but with the advancement in virtualization technology and the latest application runtimes you can consider them outdated. That doesn't mean that you should not think about security and performance when you design your application.

The good side of the resource pooling is that it enabled cloud providers to achieve higher application density on single hardware and much higher resource utilization (sometimes going up to 75% to 80% compared to the 10%-12% in the traditional approach). As a result of that the price for resource usage continues to fall. Another benefit of the resource pooling is that resources can easily be shifted where the demand is without the need for the customer to know where those resources come from and where are they located. Once again, as a customer you can request from the pool as many resources as you need at certain time; once you are done utilizing those you can return them to the pool so that somebody else can use them. Because you as a customer are not aware what the size of the resource pool is, your perception is that the resources are unlimited. In contrast in the traditional approach the application owners have always been constrained by the resources available on limited number of machines (i.e. the ones that they have ordered and installed in their own datacenter).

Rapid Elasticity
Elasticity is tightly related to the pooling of resources and allows you to easily expand and contract the amount of resources your application is using. The best part here is that this expansion and contraction can be automated and thus save you money when your application is under light load and doesn't need many resources.

In order to achieve this elasticity in the traditional case the process would look something like this: when the load on your application increases you need to power up more machines and add them to the pool of servers that run your application; when the load on your application decreases you start removing servers from the pool and then powering them off. Of course we all know that nobody is doing this because it is much more expensive to constantly add and remove machines from the pool and thus everybody runs the maximum number of machines all the time with very low utilization. And we all know that if the resource planning is not done right and the load on the application is so heavy that the maximum number of machines cannot handle it, the result is increase of errors, dropped request and unhappy customers.

In the cloud scenario where you can add and remove resource within minutes you don't need to spend a great deal of time doing capacity planning. You can start very small, monitor the usage of your application and add more and more resources as you grow.

Measured Service
In order to make money the cloud providers need the ability to measure the resource usage. Because in most cases the cloud monetization is based on the pay-per-use model they need to be able to give the customers break down of how much and what resources they have used. As mentioned in the NIST definition this allows transparency for both the provider and the consumer of the service.

The ability to measure the resource usage is important in to you, the consumer of the service, in several different ways. First, based on historical data you can budget for future growth of your application. It also allows you to better budget new projects that deliver similar applications. It is also important for application architects and developers to optimize their applications for lower resource utilization (at the end everything comes to dollars on the monthly bill).

On the other side it helps the cloud providers to better optimize their datacenter resources and provide higher density per hardware. It also helps them with the capacity planning so that they don't end up with 100% utilization and no excess capacity to cover unexpected consumer growth.

Compare this to the traditional approach where you never knew how much of your compute capacity is utilized, or how much of your network capacity is used, or how much of your storage is occupied. In rare cases companies were able to collect such statistics but almost never those have been used to provide financial benefit for the enterprise.

Having those five essential characteristics you should be able to recognize the "true" cloud offerings available on the market. In the next posts I will go over the service and deployment models for cloud computing.

Read the original blog entry...

More Stories By Toddy Mladenov

Toddy Mladenov has more than 15 years experience in software development and technology consulting at companies like Microsoft, SAP and 3Com. Currently he is a CTO of Agitare Technologies, Inc. - a boutique consulting company that specializes in Cloud Computing and Big Data Solutions. Before Agitare Tech Toddy spent few years with PaaS startup Apprenda and more than six years working on Microsft's cloud computing platform Windows Azure, Windows Client and MSN/Windows Live. During his career at Microsoft he managed different aspects of the software development process for Windows Azure and Windows Services. He also evangelized Microsoft cloud services among open source communities like PHP and Java. In the past he developed enterprise software for German's software giant SAP and several startups in Europe, and managed the technical sales for 3Com in the Balkan region.

With his broad industry experience, international background and end-user point of view Toddy has an unique approach towards technology. He believes that technology should be develop to improve people's lives and is eager to share his knowledge in topics like cloud computing, mobile and web development.

@ThingsExpo Stories
Noted IoT expert and researcher Joseph di Paolantonio (pictured below) has joined the @ThingsExpo faculty. Joseph, who describes himself as an “Independent Thinker” from DataArchon, will speak on the topic of “Smart Grids & Managing Big Utilities.” Over his career, Joseph di Paolantonio has worked in the energy, renewables, aerospace, telecommunications, and information technology industries. His expertise is in data analysis, system engineering, Bayesian statistics, data warehouses, business intelligence, data mining, predictive methods, and very large databases (VLDB). Prior to DataArchon, he served as a VP and Principal Analyst with Constellation Group. He is a member of the Boulder (Colo.) Brain Trust, an organization with a mission “to benefit the Business Intelligence and data management industry by providing pro bono exchange of information between vendors and independent analysts on new trends and technologies and to provide vendors with constructive feedback on their of...
All major researchers estimate there will be tens of billions devices – computers, smartphones, tablets, and sensors – connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo in Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be!
Software AG helps organizations transform into Digital Enterprises, so they can differentiate from competitors and better engage customers, partners and employees. Using the Software AG Suite, companies can close the gap between business and IT to create digital systems of differentiation that drive front-line agility. We offer four on-ramps to the Digital Enterprise: alignment through collaborative process analysis; transformation through portfolio management; agility through process automation and integration; and visibility through intelligent business operations and big data.
There will be 50 billion Internet connected devices by 2020. Today, every manufacturer has a propriety protocol and an app. How do we securely integrate these "things" into our lives and businesses in a way that we can easily control and manage? Even better, how do we integrate these "things" so that they control and manage each other so our lives become more convenient or our businesses become more profitable and/or safe? We have heard that the best interface is no interface. In his session at Internet of @ThingsExpo, Chris Matthieu, Co-Founder & CTO at Octoblu, Inc., will discuss how these devices generate enough data to learn our behaviors and simplify/improve our lives. What if we could connect everything to everything? I'm not only talking about connecting things to things but also systems, cloud services, and people. Add in a little machine learning and artificial intelligence and now we have something interesting...
Last week, while in San Francisco, I used the Uber app and service four times. All four experiences were great, although one of the drivers stopped for 30 seconds and then left as I was walking up to the car. He must have realized I was a blogger. None the less, the next car was just a minute away and I suffered no pain. In this article, my colleague, Ved Sen, Global Head, Advisory Services Social, Mobile and Sensors at Cognizant shares his experiences and insights.
We are reaching the end of the beginning with WebRTC and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) irreversibly encoded. In his session at Internet of @ThingsExpo, Peter Dunkley, Technical Director at Acision, will look at how this identity problem can be solved and discuss ways to use existing web identities for real-time communication.
Can call centers hang up the phones for good? Intuitive Solutions did. WebRTC enabled this contact center provider to eliminate antiquated telephony and desktop phone infrastructure with a pure web-based solution, allowing them to expand beyond brick-and-mortar confines to a home-based agent model. It also ensured scalability and better service for customers, including MUY! Companies, one of the country's largest franchise restaurant companies with 232 Pizza Hut locations. This is one example of WebRTC adoption today, but the potential is limitless when powered by IoT. Attendees will learn real-world benefits of WebRTC and explore future possibilities, as WebRTC and IoT intersect to improve customer service.
From telemedicine to smart cars, digital homes and industrial monitoring, the explosive growth of IoT has created exciting new business opportunities for real time calls and messaging. In his session at Internet of @ThingsExpo, Ivelin Ivanov, CEO and Co-Founder of Telestax, will share some of the new revenue sources that IoT created for Restcomm – the open source telephony platform from Telestax. Ivelin Ivanov is a technology entrepreneur who founded Mobicents, an Open Source VoIP Platform, to help create, deploy, and manage applications integrating voice, video and data. He is the co-founder of TeleStax, an Open Source Cloud Communications company that helps the shift from legacy IN/SS7 telco networks to IP-based cloud comms. An early investor in multiple start-ups, he still finds time to code for his companies and contribute to open source projects.
The Internet of Things (IoT) promises to create new business models as significant as those that were inspired by the Internet and the smartphone 20 and 10 years ago. What business, social and practical implications will this phenomenon bring? That's the subject of "Monetizing the Internet of Things: Perspectives from the Front Lines," an e-book released today and available free of charge from Aria Systems, the leading innovator in recurring revenue management.
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges.
There’s Big Data, then there’s really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. In her session at 6th Big Data Expo®, Hannah Smalltree, Director at Treasure Data, to discuss how IoT, Big Data and deployments are processing massive data volumes from wearables, utilities and other machines.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at Internet of @ThingsExpo, Erik Lagerway, Co-founder of Hookflash, will walk through the shifting landscape of traditional telephone and voice services to the modern P2P RTC era of OTT cloud assisted services.
While great strides have been made relative to the video aspects of remote collaboration, audio technology has basically stagnated. Typically all audio is mixed to a single monaural stream and emanates from a single point, such as a speakerphone or a speaker associated with a video monitor. This leads to confusion and lack of understanding among participants especially regarding who is actually speaking. Spatial teleconferencing introduces the concept of acoustic spatial separation between conference participants in three dimensional space. This has been shown to significantly improve comprehension and conference efficiency.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, will discuss single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example to explain some of these concepts including when to use different storage models.
SYS-CON Events announced today that Gridstore™, the leader in software-defined storage (SDS) purpose-built for Windows Servers and Hyper-V, will exhibit at SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Gridstore™ is the leader in software-defined storage purpose built for virtualization that is designed to accelerate applications in virtualized environments. Using its patented Server-Side Virtual Controller™ Technology (SVCT) to eliminate the I/O blender effect and accelerate applications Gridstore delivers vmOptimized™ Storage that self-optimizes to each application or VM across both virtual and physical environments. Leveraging a grid architecture, Gridstore delivers the first end-to-end storage QoS to ensure the most important App or VM performance is never compromised. The storage grid, that uses Gridstore’s performance optimized nodes or capacity optimized nodes, starts with as few a...
The Transparent Cloud-computing Consortium (abbreviation: T-Cloud Consortium) will conduct research activities into changes in the computing model as a result of collaboration between "device" and "cloud" and the creation of new value and markets through organic data processing High speed and high quality networks, and dramatic improvements in computer processing capabilities, have greatly changed the nature of applications and made the storing and processing of data on the network commonplace. These technological reforms have not only changed computers and smartphones, but are also changing the data processing model for all information devices. In particular, in the area known as M2M (Machine-To-Machine), there are great expectations that information with a new type of value can be produced using a variety of devices and sensors saving/sharing data via the network and through large-scale cloud-type data processing. This consortium believes that attaching a huge number of devic...
Innodisk is a service-driven provider of industrial embedded flash and DRAM storage products and technologies, with a focus on the enterprise, industrial, aerospace, and defense industries. Innodisk is dedicated to serving their customers and business partners. Quality is vitally important when it comes to industrial embedded flash and DRAM storage products. That’s why Innodisk manufactures all of their products in their own purpose-built memory production facility. In fact, they designed and built their production center to maximize manufacturing efficiency and guarantee the highest quality of our products.
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. Over the summer Gartner released its much anticipated annual Hype Cycle report and the big news is that Internet of Things has now replaced Big Data as the most hyped technology. Indeed, we're hearing more and more about this fascinating new technological paradigm. Every other IT news item seems to be about IoT and its implications on the future of digital business.
Can call centers hang up the phones for good? Intuitive Solutions did. WebRTC enabled this contact center provider to eliminate antiquated telephony and desktop phone infrastructure with a pure web-based solution, allowing them to expand beyond brick-and-mortar confines to a home-based agent model. Download Slide Deck: ▸ Here
BSQUARE is a global leader of embedded software solutions. We enable smart connected systems at the device level and beyond that millions use every day and provide actionable data solutions for the growing Internet of Things (IoT) market. We empower our world-class customers with our products, services and solutions to achieve innovation and success. For more information, visit www.bsquare.com.