Click here to close now.

Welcome!

Containers Expo Blog Authors: Rex Morrow, Datical, Liz McMillan, Elizabeth White, Pat Romanski, John Wetherill

Related Topics: Containers Expo Blog, JAVA IoT, Microservices Expo, CloudExpo® Blog, BigDataExpo® Blog, SDN Journal

Containers Expo Blog: Article

The Big Data Bottleneck: Uploading to the Cloud

If only we could get those gigando-bytes into the Cloud in the first place. And there’s the rub.

The problem with Big Data is that, well, Big Data are big. Really big. We’re talking terabytes. Petabytes. Zettabytes. Whatever’s-even-bigger-bytes. And of course, we want to solve all our Big Data challenges in the Cloud. If only we could get those gigando-bytes into the Cloud in the first place. And there’s the rub.

Uploading Big Data from our internal network to the Cloud via an Internet connection is as practical as filling a swimming pool through a drinking straw. It doesn’t matter how sophisticated our Big Data analytics, how super-duper our Hadoopers. If we can’t efficiently get our data where we need them when we need them, we’re stuck.

Optimize the Pipe
Fortunately, the Big Data upload problem isn’t new. In fact, it’s been around for years, under the moniker Wide Area Network (WAN) Optimization. Fortunate for us because vendors have been working on WAN Optimization techniques for a while now, and now several of them are repurposing those techniques to help with the Cloud.

For example, Aryaka has been peddling WAN Optimization appliances for several years. Put one appliance in your local data center, a second in the remote data center, and proprietary technology moves data from one to the other at a rapid clip. Now that the Cloud has turned their world upside down, they are providing a distributed service at the remote end, a “mesh of network connections” better suited to the Cloud. In other words, Aryaka is building an offering similar to Content Delivery Networks (CDNs) like Akamai.

RainStor, in contrast, focuses primarily on a proprietary compression algorithm that promises to squeeze data into one fortieth their original size. Furthermore, RainStor’s compressed data remain directly accessible using standard SQL or even MapReduce on Hadoop with no storage-eating, time-consuming reinflation.

Then there’s Aspera, who’s found a sophisticated way around the limitations of the Transmission Control Protocol (TCP) itself. After all, TCP’s tiny packets and penchant for resending them are a large part of the reason uploading Big Data over the Internet runs like such a dog in the first place. To teach this dog a new trick or two, Aspera transfers use one TCP port for session initialization and control, and one User Datagram Protocol (UDP) port for data transfer.

UDP is an older, fire-and-forget protocol that doesn’t perform the retries that provide TCP’s reliability, but by combining the two protocols, FASP achieves nearly 100% error-free data throughput. In fact, FASP reaches the maximum transfer speed possible given the hardware on which you deploy it, and maintains maximum available throughput independent of network delay and packet loss. FASP also aggregates hundreds of concurrent transfers on commodity hardware, addressing the drinking straw problem in part by supporting hundreds of straws at once.

CloudOpt is also a player worth mentioning. Their JetStream technology takes a soup-to-nuts approach that combines compression and transmission protocol optimization with advanced data deduplication, SSL acceleration, and an ingenious approach to getting the most performance out of cached data. Or Attunity Cloudbeam, that touts file to Cloud upload, file to Cloud replication, and Cloud to Cloud replication. Attunity’s Managed File Transfer (MFT) incorporates a secure DMZ architecture, security policy enforcement, guaranteed and accelerated transfers, process automation, and audit capabilities across each stage of the file transfer process.

Finally, there’s Amazon Web Services (AWS) itself. Yes, most if not all of the vendors discussed above can firehose data into AWS’s various storage services. But AWS also offers a simple, if decidedly low-tech approach as well: AWS Import/Export. Simply ship your big hard drives to Amazon. They’ll hook them up, copy the data to your Simple Storage Service (S3) or other storage service, and ship the drive back when you’re done. This SneakerNet or “Forklifting” approach, believe it or not, can even be faster than some of the over-the-Internet optimizations for certain Big Data sets, even considering the time it takes to FedEx AWS your drives.

On Beyond Drinking Straws
The problem with most of the approaches above (excepting only Aspera and Amazon’s forklift) is that they make the drinking straw we’re using to fill that swimming pool better, faster, and bigger – but we’re still filling that damn pool with a straw. So what’s better than a straw? How about many straws? If any optimization technique improves a single connection to the Internet, then it stands to reason that establishing many connections to your Cloud provider in parallel would multiply your upload speed dramatically.

Fair enough, but let’s think out of the box here. A fundamental Big Data best practice is to bring your analytics to your data. The reasoning is that it’s hard to move your data but easy to move your software, so once your data are in the Cloud, you should also run your analytics there.

But this argument also works in reverse. If your data aren’t in the Cloud, then it may not make sense to move them to the Cloud simply to run your software there. Instead, bring your software to your data, even if they’re on premise.

Perish the thought, you say! We’re sold on Big Data in the Cloud. We’ve crunched the numbers and we know it’s going to save us money, provide more capabilities, and facilitate sharing information across our organization and the world. Fair enough. Here’s another twist for you.

Why are your Big Data sets outside the Cloud to begin with? Sure, you’re stuck with existing, legacy data sets wherever they happen to be today. But as a rule, those don’t constitute Big Data, or will cease to qualify as being large enough to warrant the Big Data label relatively soon. By definition, Big Data sets keep expanding exponentially, which means that you keep creating them with generations of newfangled tools.

In fact, there are already multitudinous sources for raw Big Data, as varied as the Big Data challenges organizations struggle with today. But many such sources are already in the Cloud, or could be moved to the Cloud simply. For example, clickthrough data from your Web sites. Such data come from your Web servers, which should be in the Cloud anyway. If your Big Data come from Web Servers scattered here and there in the Cloud, then moving the clickthrough data to a Big Data repository for processing can be handled in the same Cloud. No need for uploading.

What about data sources that aren’t already in the Cloud? Many Big Data streams come from instrumentation or sensors of some sort, from seismographs underground to EKGs in hospitals to UPC scanners in supermarkets. There’s no reason why such instrumentation shouldn’t pour their raw data feeds directly to the Cloud. What good is storing a week’s worth of supermarket purchasing data on premise anyway? You’ll want to store, process, manage, and analyze those data in the Cloud, so the sooner you get it there, the better.

The ZapThink Take
The only reason we have to worry about uploading Big Data to the Cloud in the first place is because our Big Data aren’t already in the Cloud. And broadly speaking, the reason they’re not already in the Cloud is because the Cloud isn’t everywhere. Instead, we think of the Cloud as being locked away in data centers, those alien, air conditioned facilities packed full of racks of high tech equipment.

That may be true today, but as ZapThink has discussed before, there’s nothing in the definition of Cloud Computing that requires Cloud resources to live in data centers. You might have a bit of the Cloud in your pocket, or on your laptop, in your car, or in your refrigerator. For now, this vision of the Internet of Things meeting the Cloud is mostly the stuff of science fiction. We’re only now figuring out what it means to have a ubiquitous global network of sensors, from the aforementioned EKGs and UPC scanners to traffic cameras to home thermostats. But the writing is on the wall. Just as we now don’t think twice about carrying supercomputers in our pockets, it’s only a matter of time until the Cloud itself is fully distributed and ubiquitous. When that happens, the question of moving Big Data to the Cloud will be moot. They will already be there.

Are you one of the vendors mentioned in this article and have a correction, or a vendor who should have been mentioned but wasn’t? Please feel free to comment here.

Image Source: US Navy

More Stories By Jason Bloomberg

Jason Bloomberg is the leading expert on architecting agility for the enterprise. As president of Intellyx, Mr. Bloomberg brings his years of thought leadership in the areas of Cloud Computing, Enterprise Architecture, and Service-Oriented Architecture to a global clientele of business executives, architects, software vendors, and Cloud service providers looking to achieve technology-enabled business agility across their organizations and for their customers. His latest book, The Agile Architecture Revolution (John Wiley & Sons, 2013), sets the stage for Mr. Bloomberg’s groundbreaking Agile Architecture vision.

Mr. Bloomberg is perhaps best known for his twelve years at ZapThink, where he created and delivered the Licensed ZapThink Architect (LZA) SOA course and associated credential, certifying over 1,700 professionals worldwide. He is one of the original Managing Partners of ZapThink LLC, the leading SOA advisory and analysis firm, which was acquired by Dovel Technologies in 2011. He now runs the successor to the LZA program, the Bloomberg Agile Architecture Course, around the world.

Mr. Bloomberg is a frequent conference speaker and prolific writer. He has published over 500 articles, spoken at over 300 conferences, Webinars, and other events, and has been quoted in the press over 1,400 times as the leading expert on agile approaches to architecture in the enterprise.

Mr. Bloomberg’s previous book, Service Orient or Be Doomed! How Service Orientation Will Change Your Business (John Wiley & Sons, 2006, coauthored with Ron Schmelzer), is recognized as the leading business book on Service Orientation. He also co-authored the books XML and Web Services Unleashed (SAMS Publishing, 2002), and Web Page Scripting Techniques (Hayden Books, 1996).

Prior to ZapThink, Mr. Bloomberg built a diverse background in eBusiness technology management and industry analysis, including serving as a senior analyst in IDC’s eBusiness Advisory group, as well as holding eBusiness management positions at USWeb/CKS (later marchFIRST) and WaveBend Solutions (now Hitachi Consulting).

@ThingsExpo Stories
Buzzword alert: Microservices and IoT at a DevOps conference? What could possibly go wrong? In this Power Panel at DevOps Summit, moderated by Jason Bloomberg, the leading expert on architecting agility for the enterprise and president of Intellyx, panelists will peel away the buzz and discuss the important architectural principles behind implementing IoT solutions for the enterprise. As remote IoT devices and sensors become increasingly intelligent, they become part of our distributed cloud environment, and we must architect and code accordingly. At the very least, you'll have no problem fil...
"People are a lot more knowledgeable about APIs now. There are two types of people who work with APIs - IT people who want to use APIs for something internal and the product managers who want to do something outside APIs for people to connect to them," explained Roberto Medrano, Executive Vice President at SOA Software, in this SYS-CON.tv interview at Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
Almost everyone sees the potential of Internet of Things but how can businesses truly unlock that potential. The key will be in the ability to discover business insight in the midst of an ocean of Big Data generated from billions of embedded devices via Systems of Discover. Businesses will also need to ensure that they can sustain that insight by leveraging the cloud for global reach, scale and elasticity.
The 4th International Internet of @ThingsExpo, co-located with the 17th International Cloud Expo - to be held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA - announces that its Call for Papers is open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect at GE, and Ibrahim Gokcen, who leads GE's advanced IoT analytics, focused on the Internet of Things / Industrial Internet and how to make it operational for business end-users. Learn about the challenges posed by machine and sensor data and how to marry it with enterprise data. They also discussed the tips and tricks to provide the Industrial Internet as an end-user consumable service using Big Data Analytics and Industrial Cloud.
Building low-cost wearable devices can enhance the quality of our lives. In his session at Internet of @ThingsExpo, Sai Yamanoor, Embedded Software Engineer at Altschool, provided an example of putting together a small keychain within a $50 budget that educates the user about the air quality in their surroundings. He also provided examples such as building a wearable device that provides transit or recreational information. He then reviewed the resources available to build wearable devices at home including open source hardware, the raw materials required and the options available to power s...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
We certainly live in interesting technological times. And no more interesting than the current competing IoT standards for connectivity. Various standards bodies, approaches, and ecosystems are vying for mindshare and positioning for a competitive edge. It is clear that when the dust settles, we will have new protocols, evolved protocols, that will change the way we interact with devices and infrastructure. We will also have evolved web protocols, like HTTP/2, that will be changing the very core of our infrastructures. At the same time, we have old approaches made new again like micro-services...
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
Collecting data in the field and configuring multitudes of unique devices is a time-consuming, labor-intensive process that can stretch IT resources. Horan & Bird [H&B], Australia’s fifth-largest Solar Panel Installer, wanted to automate sensor data collection and monitoring from its solar panels and integrate the data with its business and marketing systems. After data was collected and structured, two major areas needed to be addressed: improving developer workflows and extending access to a business application to multiple users (multi-tenancy). Docker, a container technology, was used to ...
The true value of the Internet of Things (IoT) lies not just in the data, but through the services that protect the data, perform the analysis and present findings in a usable way. With many IoT elements rooted in traditional IT components, Big Data and IoT isn’t just a play for enterprise. In fact, the IoT presents SMBs with the prospect of launching entirely new activities and exploring innovative areas. CompTIA research identifies several areas where IoT is expected to have the greatest impact.
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, data security and privacy.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
The Internet of Things is not only adding billions of sensors and billions of terabytes to the Internet. It is also forcing a fundamental change in the way we envision Information Technology. For the first time, more data is being created by devices at the edge of the Internet rather than from centralized systems. What does this mean for today's IT professional? In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists will addresses this very serious issue of profound change in the industry.
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo, June 9-11, 2015, at the Javits Center in New York City. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be
Container frameworks, such as Docker, provide a variety of benefits, including density of deployment across infrastructure, convenience for application developers to push updates with low operational hand-holding, and a fairly well-defined deployment workflow that can be orchestrated. Container frameworks also enable a DevOps approach to application development by cleanly separating concerns between operations and development teams. But running multi-container, multi-server apps with containers is very hard. You have to learn five new and different technologies and best practices (libswarm, sy...
SYS-CON Events announced today that DragonGlass, an enterprise search platform, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. After eleven years of designing and building custom applications, OpenCrowd has launched DragonGlass, a cloud-based platform that enables the development of search-based applications. These are a new breed of applications that utilize a search index as their backbone for data retrieval. They can easily adapt to new data sets and provide access to both structured and unstruc...
The Internet of Things is a misnomer. That implies that everything is on the Internet, and that simply should not be - especially for things that are blurring the line between medical devices that stimulate like a pacemaker and quantified self-sensors like a pedometer or pulse tracker. The mesh of things that we manage must be segmented into zones of trust for sensing data, transmitting data, receiving command and control administrative changes, and peer-to-peer mesh messaging. In his session at @ThingsExpo, Ryan Bagnulo, Solution Architect / Software Engineer at SOA Software, focused on desi...