Click here to close now.


Containers Expo Blog Authors: Carmen Gonzalez, Pat Romanski, Elizabeth White, Mike Kavis, Don MacVittie

Related Topics: SDN Journal

SDN Journal: Blog Feed Post

F5 Application Layer SDN: Now with Extreme Programmability

As you move up the network stack, you move from directing packets to managing flows

"If you look at the standard SDN model, [Layer 4-7 services] are applications that can basically run on the [SDN] controller platform. But that's not the only way to do them. We'll hear about different approaches. Network services for SDN are going to be a big story in 2013."

-- Brad Casemore, "Networking outlook: Controllers, Layer 4-7 will roil SDN 2013 market" [emphasis mine]

Since SDN became the darling du jour of the networking industry, there's been a lot of head nodding and ancillary mention of L4-7 services eventually becoming part of the overall fabric. What there hasn't been is a lot of discussion on the challenges inherent in bringing those services to bear in what has become the de facto standard model: a centralized controller responsible for directing the flow of packets throughout the network.

That's challenging, because as you move up the network stack there's a natural evolution that occurs. You move from directing packets to managing flows, and managing flows requires a completely different set of features. That's because the closer to layer 7 you get, the more stateful the network necessarily must become. It can no longer act on individual packets; it must aggregate those packets and it must do it often - far more often than is presupposed when working at layer 2 and 3 of the network stack.

John Giacomoni said it well when he explained in a recent post, "Beyond SDN Fabric: Complex problems require L7+ SDN technologies":

“To implement even basic load balancing with OpenFlow the majority of packets, and all ACKs in particular, need to be forwarded to the controller so session flow state can be accurately tracked.”

Consider that in a router, about 1 in every 1 million packets needs to be forwarded to the controller. In a switch, that ratio is on the order of 1 in every 1 billion. For TCP that ratio drops to a mere 1 out of every 10 packets. If you climb a bit higher in the network stack to layer 7, you might as well consider every packet a candidate to be forwarded on to the controller.

The SDN model upon which most solutions today are based work on the assumption that most packets don't need to be examined by the controller. Thus they are able to scale and maintain wire speed while adding agility and programmability to the lower layers of the network.

A different model is required for Application Layer SDN to ensure agility and performance can be maintained while gaining the benefits of application intelligence and programmability. The SDN Network Fabric (layer 2-3) operates on the premise of centralized control and execution. The SDN Application Services Fabric (layer 4-7) must operate on the premise of centralized control and decentralized execution in order to scale without sacrificing the many benefits of stateful network devices enjoyed by current models of network architecture such as security-related functions, fault tolerance and isolation, and performance enhancing services.

Extreme Programmability: Enter LineRate Systems

As SDN matures, its focus will continue to move up the network stack, toward the application layers. The programmable, scalable services at the application layer comprising the Application Services Fabric are necessary to fully realize the benefits of SDN and software-defined data centers, particularly in environments where network function virtualization (NFV) is adopted as a strategy to achieve maximum agility. Network function virtualization requires not only the improved performance of today’s modern x86 hardware platforms, but software capable of scaling on demand while maintaining optimal performance and offering a high-degree of programmability for superior software defined control over the network.

Programmability is required for reducing operational costs through automation and centralized control, but it is also needed to enable customers to develop innovative, application-specific services that work in concert with SDN architectures. Critical to the success of these architectures are security, acceleration, optimization, and routing services at the application layers that are able to meet modern expectations of flexibility, scale, and performance.

LineRate brings a programmable, scalable platform to the Application Layer SDN table. Its platform is not only capable of scaling on demand and meeting performance expectations on commoditized x86 hardware, but it is highly programmable. In fact it is designed specifically to be programmed to execute purpose-built business and operational logic at high speeds. It's a proxy-based architecture, similar to that of F5 BIG-IP, and offers what I can only describe as "extreme programmability" as its core capability. Rather than insert lightweight rules into the data plane as is the operating procedure for SDN L2-3 fabrics, LineRate SDN Services act as independently operating service nodes that maintain the scaling properties expected of SDN solutions and of modern high-availability architectures, i.e. unlike the centralized SDN controller architecture, a decentralized execution model is fault tolerant even when maintaining state, a requirement for the Application Services Fabric.

As networks continue to become commoditized, it is the application layer services in an SDN that will provide organizations with the competitive advantage they need. A programmable data path is required for organizations desiring to roll their own services and it must be scalable and fast; organizations are unwilling (and rightfully so) to sacrifice performance. LineRate Systems offers such a platform and its addition to the F5 portfolio expands F5's continued leadership in application layer networking in both traditional and Application Layer SDN architectures.

Read the original blog entry...

More Stories By Lori MacVittie

Lori MacVittie is responsible for education and evangelism of application services available across F5’s entire product suite. Her role includes authorship of technical materials and participation in a number of community-based forums and industry standards organizations, among other efforts. MacVittie has extensive programming experience as an application architect, as well as network and systems development and administration expertise. Prior to joining F5, MacVittie was an award-winning Senior Technology Editor at Network Computing Magazine, where she conducted product research and evaluation focused on integration with application and network architectures, and authored articles on a variety of topics aimed at IT professionals. Her most recent area of focus included SOA-related products and architectures. She holds a B.S. in Information and Computing Science from the University of Wisconsin at Green Bay, and an M.S. in Computer Science from Nova Southeastern University.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.

@ThingsExpo Stories
As more intelligent IoT applications shift into gear, they’re merging into the ever-increasing traffic flow of the Internet. It won’t be long before we experience bottlenecks, as IoT traffic peaks during rush hours. Organizations that are unprepared will find themselves by the side of the road unable to cross back into the fast lane. As billions of new devices begin to communicate and exchange data – will your infrastructure be scalable enough to handle this new interconnected world?
Developing software for the Internet of Things (IoT) comes with its own set of challenges. Security, privacy, and unified standards are a few key issues. In addition, each IoT product is comprised of at least three separate application components: the software embedded in the device, the backend big-data service, and the mobile application for the end user's controls. Each component is developed by a different team, using different technologies and practices, and deployed to a different stack/target - this makes the integration of these separate pipelines and the coordination of software upd...
As a company adopts a DevOps approach to software development, what are key things that both the Dev and Ops side of the business must keep in mind to ensure effective continuous delivery? In his session at DevOps Summit, Mark Hydar, Head of DevOps, Ericsson TV Platforms, will share best practices and provide helpful tips for Ops teams to adopt an open line of communication with the development side of the house to ensure success between the two sides.
The IoT is upon us, but today’s databases, built on 30-year-old math, require multiple platforms to create a single solution. Data demands of the IoT require Big Data systems that can handle ingest, transactions and analytics concurrently adapting to varied situations as they occur, with speed at scale. In his session at @ThingsExpo, Chad Jones, chief strategy officer at Deep Information Sciences, will look differently at IoT data so enterprises can fully leverage their IoT potential. He’ll share tips on how to speed up business initiatives, harness Big Data and remain one step ahead by apply...
There will be 20 billion IoT devices connected to the Internet soon. What if we could control these devices with our voice, mind, or gestures? What if we could teach these devices how to talk to each other? What if these devices could learn how to interact with us (and each other) to make our lives better? What if Jarvis was real? How can I gain these super powers? In his session at 17th Cloud Expo, Chris Matthieu, co-founder and CTO of Octoblu, will show you!
With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo in Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be! Internet of @ThingsExpo, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 17th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The Internet of Things (IoT) is the most profound change in personal an...
Today air travel is a minefield of delays, hassles and customer disappointment. Airlines struggle to revitalize the experience. GE and M2Mi will demonstrate practical examples of how IoT solutions are helping airlines bring back personalization, reduce trip time and improve reliability. In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect with GE, and Dr. Sarah Cooper, M2Mi's VP Business Development and Engineering, will explore the IoT cloud-based platform technologies driving this change including privacy controls, data transparency and integration of real time context w...
The Internet of Everything is re-shaping technology trends–moving away from “request/response” architecture to an “always-on” Streaming Web where data is in constant motion and secure, reliable communication is an absolute necessity. As more and more THINGS go online, the challenges that developers will need to address will only increase exponentially. In his session at @ThingsExpo, Todd Greene, Founder & CEO of PubNub, will explore the current state of IoT connectivity and review key trends and technology requirements that will drive the Internet of Things from hype to reality.
SYS-CON Events announced today that Sandy Carter, IBM General Manager Cloud Ecosystem and Developers, and a Social Business Evangelist, will keynote at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA.
SYS-CON Events announced today that Super Micro Computer, Inc., a global leader in high-performance, high-efficiency server, storage technology and green computing, will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Supermicro (NASDAQ: SMCI), the leading innovator in high-performance, high-efficiency server technology is a premier provider of advanced server Building Block Solutions® for Data Center, Cloud Computing, Enterprise IT, Hadoop/Big Data, HPC and Embedded Systems worldwide. Supermi...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
Nowadays, a large number of sensors and devices are connected to the network. Leading-edge IoT technologies integrate various types of sensor data to create a new value for several business decision scenarios. The transparent cloud is a model of a new IoT emergence service platform. Many service providers store and access various types of sensor data in order to create and find out new business values by integrating such data.
There are so many tools and techniques for data analytics that even for a data scientist the choices, possible systems, and even the types of data can be daunting. In his session at @ThingsExpo, Chris Harrold, Global CTO for Big Data Solutions for EMC Corporation, will show how to perform a simple, but meaningful analysis of social sentiment data using freely available tools that take only minutes to download and install. Participants will get the download information, scripts, and complete end-to-end walkthrough of the analysis from start to finish. Participants will also be given the pract...
Too often with compelling new technologies market participants become overly enamored with that attractiveness of the technology and neglect underlying business drivers. This tendency, what some call the “newest shiny object syndrome,” is understandable given that virtually all of us are heavily engaged in technology. But it is also mistaken. Without concrete business cases driving its deployment, IoT, like many other technologies before it, will fade into obscurity.
WebRTC services have already permeated corporate communications in the form of videoconferencing solutions. However, WebRTC has the potential of going beyond and catalyzing a new class of services providing more than calls with capabilities such as mass-scale real-time media broadcasting, enriched and augmented video, person-to-machine and machine-to-machine communications. In his session at @ThingsExpo, Luis Lopez, CEO of Kurento, will introduce the technologies required for implementing these ideas and some early experiments performed in the Kurento open source software community in areas ...
Electric power utilities face relentless pressure on their financial performance, and reducing distribution grid losses is one of the last untapped opportunities to meet their business goals. Combining IoT-enabled sensors and cloud-based data analytics, utilities now are able to find, quantify and reduce losses faster – and with a smaller IT footprint. Solutions exist using Internet-enabled sensors deployed temporarily at strategic locations within the distribution grid to measure actual line loads.
“In the past year we've seen a lot of stabilization of WebRTC. You can now use it in production with a far greater degree of certainty. A lot of the real developments in the past year have been in things like the data channel, which will enable a whole new type of application," explained Peter Dunkley, Technical Director at Acision, in this interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
Today’s connected world is moving from devices towards things, what this means is that by using increasingly low cost sensors embedded in devices we can create many new use cases. These span across use cases in cities, vehicles, home, offices, factories, retail environments, worksites, health, logistics, and health. These use cases rely on ubiquitous connectivity and generate massive amounts of data at scale. These technologies enable new business opportunities, ways to optimize and automate, along with new ways to engage with users.
Through WebRTC, audio and video communications are being embedded more easily than ever into applications, helping carriers, enterprises and independent software vendors deliver greater functionality to their end users. With today’s business world increasingly focused on outcomes, users’ growing calls for ease of use, and businesses craving smarter, tighter integration, what’s the next step in delivering a richer, more immersive experience? That richer, more fully integrated experience comes about through a Communications Platform as a Service which allows for messaging, screen sharing, video...
WebRTC converts the entire network into a ubiquitous communications cloud thereby connecting anytime, anywhere through any point. In his session at WebRTC Summit,, Mark Castleman, EIR at Bell Labs and Head of Future X Labs, will discuss how the transformational nature of communications is achieved through the democratizing force of WebRTC. WebRTC is doing for voice what HTML did for web content.