Welcome!

Containers Expo Blog Authors: Lori MacVittie, Steven Lamb, Elizabeth White, Liz McMillan, John Basso

Related Topics: @CloudExpo, Java IoT, Microservices Expo, Containers Expo Blog, Agile Computing, SDN Journal, @ThingsExpo

@CloudExpo: Article

Securing the Internet of Things: Is the IoT DoA?

How will your dishwasher know someone has hacked your thermostat?

Your alarm clock jars you awake. You stumble to the kitchen, fire up your coffee maker, grab some milk from the fridge, and pour yourself a bowl of cereal. You turn down the thermostat before you head to your car. You park your sedan in your usual spot in the garage at work, and you enter your office building by waving your badge at the door. Finally, you drop into your chair and fire up your computer.

A mundane story, one millions of people trudge through every day with only minor variations. But here’s the question: how many Internet-connected devices did you interact with between opening your eyes and logging in? Let’s see: alarm clock, coffee maker, fridge, thermostat, your automobile, all the stop lights, traffic cameras, toll transceivers, and in-road traffic sensors on your commute, and finally your badge and the door. OK, maybe your household appliances aren’t on the Internet yet. Give them a few years.

Now ask yourself: how many of those net-connected doodads are secure? The answer: none of them. Every device on this list is woefully unprotected from various attacks, and to make matters worse, many of them might contain confidential information ripe for the picking. And if all that weren’t sufficiently disconcerting, the vendors of such miscellany aren’t particularly motivated to make them secure – even if they knew how to do it properly. Which they don’t. Nevertheless, we blindly forge ahead, building out the Internet of Things (IoT), as though the security issues will somehow resolve themselves. Just how worried should we be?

The Bad and the Ugly – but None of the Good
This tale of woe begins with Radio Frequency Identification (RFID) tags. These innocuous tags appear in everything from product packaging to airport tarmac equipment to passports to, yes, your security badge. And as you would expect from the tone of this ZapFlash, RFID tags are dead simple to hack. They come in two flavors: passive and active. The passive ones need no power source; they simply respond when the right signal gets close enough to them. No encryption, no authentication, no nothing. Anyone with the right device (which you can easily obtain over the Internet, of course) can read your tag simply by getting their snooping device close enough to it. Have you ever walked down the street with your security badge, or through an airport with your passport? Has anybody ever passed within a few feet of you? Stupid questions, right?

So, how do the best RFID security minds recommend protecting your RFID tags from compromise? Put them in protective sleeves. And no, wrapping your passport in aluminum foil won’t do. You need a special Faraday cage sleeve. But even if you manage to keep your RFID tags in an effective sleeve, all a hacker has to do is wait till you take it out. Recommending a sleeve to protect the IoT from attack is about as effective as climbing under school desks was at surviving a Cold War nuke.

Surely the technology in our increasingly cyber-aware automobiles is more secure than your run of the mill RFID tag, right? Sorry, no. Today’s cars have fifty or more tiny computers called electronic control units that control all aspects of the vehicle’s function. These units communicate with each other via a Controller Area Network (CAN). As vehicle manufacturers increasingly provide Internet access to their autos, hackers can easily access the CAN remotely – and with it, all the functions of the car. Brakes. Steering. Engine. Everything down to the radio.

There are two primary modes of protection the car manufacturers are implementing to prevent hackers from using these weaknesses to steal cars, kill targeted individuals, or simply wreak havoc. First, CAN protocols are proprietary. And second, the manufacturers are keeping all the details secret.

Neither technique, of course, provides any true measure of security, as researchers proved at a recent DefCon conference. Secrets are virtually impossible to keep in today’s Facebooked world. Also keep in mind, any authorized repair shop will have a diagnostic machine that interfaces with the CAN. If a hacker doesn’t want to bother reverse engineering the proprietary protocol directly, they can simply get their hands one of those machines and hack that.

Why the IoT is so Hard to Secure
There are both business and technical reasons why the IoT is so difficult to secure. On the technical side, the core problem is that the tried-and-true technologies we use to secure traditional interactions with the Internet just don’t work well – if they work at all. To use Public Key Infrastructure (PKI) technology, for example, each endpoint must be able to store digital keys and run encryption and decryption algorithms, conduct sophisticated handshakes to establish secure SSL connections, etc. However, many IoT nodes like the passive RFID tags simply don’t have the electrical power, storage, or processing power necessary to tackle even the simplest of PKI tasks.

Secondly, a large part of the IoT approach involves machine-to-machine (M2M) communication. In other words, sensors and other IoT endpoints talk to each other, instead of talking to a server somewhere. If your smart thermostat tells your dishwasher when to run, that communication might be running over your home Wi-Fi or perhaps Bluetooth or some other local network protocol that doesn’t require traffic to actually go over the Internet. And not only does it go without saying that Wi-Fi and Bluetooth protocols are shockingly easy to hack, but how are the two communicating nodes supposed to know that the information coming from the other is authorized? Essentially, any kind of M2M interaction requires a certain level of trust, only we have no way of providing that trust in the first place, or revoking it should a breach occur. How will your dishwasher know someone has hacked your thermostat?

In fact, the two examples above provide special cases of a broader problem: the IoT gives us no way to control permissions. Let’s say you figure it’s a good idea for said thermostat to Tweet certain information so it’s easy for you to monitor your home while you’re away. If a hacker compromises the thermostat, they automatically get your Twitter login – and you no longer have any way to control your Tweets.

The final challenge I’ll consider here (keeping in mind there are sure to be dozens of others) is the fact that devices on the Internet must have IP addresses – and in many cases, IoT sensors wouldn’t work properly behind firewalls. They must have public IP addresses that anyone can access. And if someone can access them, then someone will. Ever heard of Shodan? It’s a tool for finding IP addresses for random devices, including baby monitors, Webcams, security systems, and all manner of other bric-a-brac. How would you like a hacker to compromise your baby monitor? It’s happened before, and it’ll happen again.

Scanning random IP addresses, however, is only practical for the familiar IPv4 space. As we move to IPv6, there will be so many possible addresses that scanning them at random will be much more difficult. This advantage, however, is weaker than you might think. First, it simply presents an interesting challenge to enterprising hackers out there. How long will it take for a Shodan 2.0 to be IPv6 compatible? Secondly, IPv6 can actually make it more difficult for an organization with many IoT sensors to secure them (assuming they have any idea how to do so in the first place), because IPv6 makes it more difficult for an authorized party to scan for them as well. And if you don’t know what devices and sensors you have, you can’t control, manage, or secure them.

Such technical issues, of course, aren’t the whole story. On the business side, the problems are even more slippery. There is no agreement on how or even whether to address IoT security. Few countries have any regulation requiring companies to implement security in their devices. And there’s no market pressure forcing such vendors to get their act together. We, the customers, have simply grown too complacent. If we won’t pay more for secure automobiles and refrigerators, then rest assured no company will bother to go through the trouble to secure them.

The ZapThink Take
You were hoping I had some slick, imaginative approach for solving these issues, right? Sorry to disappoint. But rather than throwing our collective hands in the air, dumping all our devices down the garbage chute, and moving to a cave on Borneo somewhere, we must realize that the only way we’ll ever solve this riddle is by taking an entirely different perspective on securing technology.

We cannot impose security from the outside onto each sensor. It’s simply too easy for hackers to get a hold of them and defeat whatever mechanism we’ve put in place. Instead, the sensors themselves must be inherently secure. Only when a hacker can break open a sensor, reverse engineer it as well as the communication protocols it uses, and still not be able to hack into it or use it to hack into something else will we finally be able to sleep at night. Solve this challenge and I promise you, you’ll be very, very rich.

More Stories By Jason Bloomberg

Jason Bloomberg is the leading expert on architecting agility for the enterprise. As president of Intellyx, Mr. Bloomberg brings his years of thought leadership in the areas of Cloud Computing, Enterprise Architecture, and Service-Oriented Architecture to a global clientele of business executives, architects, software vendors, and Cloud service providers looking to achieve technology-enabled business agility across their organizations and for their customers. His latest book, The Agile Architecture Revolution (John Wiley & Sons, 2013), sets the stage for Mr. Bloomberg’s groundbreaking Agile Architecture vision.

Mr. Bloomberg is perhaps best known for his twelve years at ZapThink, where he created and delivered the Licensed ZapThink Architect (LZA) SOA course and associated credential, certifying over 1,700 professionals worldwide. He is one of the original Managing Partners of ZapThink LLC, the leading SOA advisory and analysis firm, which was acquired by Dovel Technologies in 2011. He now runs the successor to the LZA program, the Bloomberg Agile Architecture Course, around the world.

Mr. Bloomberg is a frequent conference speaker and prolific writer. He has published over 500 articles, spoken at over 300 conferences, Webinars, and other events, and has been quoted in the press over 1,400 times as the leading expert on agile approaches to architecture in the enterprise.

Mr. Bloomberg’s previous book, Service Orient or Be Doomed! How Service Orientation Will Change Your Business (John Wiley & Sons, 2006, coauthored with Ron Schmelzer), is recognized as the leading business book on Service Orientation. He also co-authored the books XML and Web Services Unleashed (SAMS Publishing, 2002), and Web Page Scripting Techniques (Hayden Books, 1996).

Prior to ZapThink, Mr. Bloomberg built a diverse background in eBusiness technology management and industry analysis, including serving as a senior analyst in IDC’s eBusiness Advisory group, as well as holding eBusiness management positions at USWeb/CKS (later marchFIRST) and WaveBend Solutions (now Hitachi Consulting).

@ThingsExpo Stories
"delaPlex is a software development company. We do team-based outsourcing development," explained Mark Rivers, COO and Co-founder of delaPlex Software, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
We all know the latest numbers: Gartner, Inc. forecasts that 6.4 billion connected things will be in use worldwide in 2016, up 30 percent from last year, and will reach 20.8 billion by 2020. We're rapidly approaching a data production of 40 zettabytes a day – more than we can every physically store, and exabytes and yottabytes are just around the corner. For many that’s a good sign, as data has been proven to equal money – IF it’s ingested, integrated, and analyzed fast enough. Without real-ti...
"There's a growing demand from users for things to be faster. When you think about all the transactions or interactions users will have with your product and everything that is between those transactions and interactions - what drives us at Catchpoint Systems is the idea to measure that and to analyze it," explained Leo Vasiliou, Director of Web Performance Engineering at Catchpoint Systems, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York Ci...
I wanted to gather all of my Internet of Things (IOT) blogs into a single blog (that I could later use with my University of San Francisco (USF) Big Data “MBA” course). However as I started to pull these blogs together, I realized that my IOT discussion lacked a vision; it lacked an end point towards which an organization could drive their IOT envisioning, proof of value, app dev, data engineering and data science efforts. And I think that the IOT end point is really quite simple…
A critical component of any IoT project is what to do with all the data being generated. This data needs to be captured, processed, structured, and stored in a way to facilitate different kinds of queries. Traditional data warehouse and analytical systems are mature technologies that can be used to handle certain kinds of queries, but they are not always well suited to many problems, particularly when there is a need for real-time insights.
Big Data, cloud, analytics, contextual information, wearable tech, sensors, mobility, and WebRTC: together, these advances have created a perfect storm of technologies that are disrupting and transforming classic communications models and ecosystems. In his session at @ThingsExpo, Erik Perotti, Senior Manager of New Ventures on Plantronics’ Innovation team, provided an overview of this technological shift, including associated business and consumer communications impacts, and opportunities it ...
You think you know what’s in your data. But do you? Most organizations are now aware of the business intelligence represented by their data. Data science stands to take this to a level you never thought of – literally. The techniques of data science, when used with the capabilities of Big Data technologies, can make connections you had not yet imagined, helping you discover new insights and ask new questions of your data. In his session at @ThingsExpo, Sarbjit Sarkaria, data science team lead ...
Extracting business value from Internet of Things (IoT) data doesn’t happen overnight. There are several requirements that must be satisfied, including IoT device enablement, data analysis, real-time detection of complex events and automated orchestration of actions. Unfortunately, too many companies fall short in achieving their business goals by implementing incomplete solutions or not focusing on tangible use cases. In his general session at @ThingsExpo, Dave McCarthy, Director of Products...
Is your aging software platform suffering from technical debt while the market changes and demands new solutions at a faster clip? It’s a bold move, but you might consider walking away from your core platform and starting fresh. ReadyTalk did exactly that. In his General Session at 19th Cloud Expo, Michael Chambliss, Head of Engineering at ReadyTalk, will discuss why and how ReadyTalk diverted from healthy revenue and over a decade of audio conferencing product development to start an innovati...
WebRTC is bringing significant change to the communications landscape that will bridge the worlds of web and telephony, making the Internet the new standard for communications. Cloud9 took the road less traveled and used WebRTC to create a downloadable enterprise-grade communications platform that is changing the communication dynamic in the financial sector. In his session at @ThingsExpo, Leo Papadopoulos, CTO of Cloud9, discussed the importance of WebRTC and how it enables companies to focus...
SYS-CON Events announced today that 910Telecom will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Housed in the classic Denver Gas & Electric Building, 910 15th St., 910Telecom is a carrier-neutral telecom hotel located in the heart of Denver. Adjacent to CenturyLink, AT&T, and Denver Main, 910Telecom offers connectivity to all major carriers, Internet service providers, Internet backbones and ...
SYS-CON Events announced today that LeaseWeb USA, a cloud Infrastructure-as-a-Service (IaaS) provider, will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. LeaseWeb is one of the world's largest hosting brands. The company helps customers define, develop and deploy IT infrastructure tailored to their exact business needs, by combining various kinds cloud solutions.
Manufacturers are embracing the Industrial Internet the same way consumers are leveraging Fitbits – to improve overall health and wellness. Both can provide consistent measurement, visibility, and suggest performance improvements customized to help reach goals. Fitbit users can view real-time data and make adjustments to increase their activity. In his session at @ThingsExpo, Mark Bernardo Professional Services Leader, Americas, at GE Digital, discussed how leveraging the Industrial Internet a...
The cloud market growth today is largely in public clouds. While there is a lot of spend in IT departments in virtualization, these aren’t yet translating into a true “cloud” experience within the enterprise. What is stopping the growth of the “private cloud” market? In his general session at 18th Cloud Expo, Nara Rajagopalan, CEO of Accelerite, explored the challenges in deploying, managing, and getting adoption for a private cloud within an enterprise. What are the key differences between wh...
SYS-CON Events announced today that Venafi, the Immune System for the Internet™ and the leading provider of Next Generation Trust Protection, will exhibit at @DevOpsSummit at 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Venafi is the Immune System for the Internet™ that protects the foundation of all cybersecurity – cryptographic keys and digital certificates – so they can’t be misused by bad guys in attacks...
The best-practices for building IoT applications with Go Code that attendees can use to build their own IoT applications. In his session at @ThingsExpo, Indraneel Mitra, Senior Solutions Architect & Technology Evangelist at Cognizant, provided valuable information and resources for both novice and experienced developers on how to get started with IoT and Golang in a day. He also provided information on how to use Intel Arduino Kit, Go Robotics API and AWS IoT stack to build an application tha...
Amazon has gradually rolled out parts of its IoT offerings in the last year, but these are just the tip of the iceberg. In addition to optimizing their back-end AWS offerings, Amazon is laying the ground work to be a major force in IoT – especially in the connected home and office. Amazon is extending its reach by building on its dominant Cloud IoT platform, its Dash Button strategy, recently announced Replenishment Services, the Echo/Alexa voice recognition control platform, the 6-7 strategic...
IoT generates lots of temporal data. But how do you unlock its value? You need to discover patterns that are repeatable in vast quantities of data, understand their meaning, and implement scalable monitoring across multiple data streams in order to monetize the discoveries and insights. Motif discovery and deep learning platforms are emerging to visualize sensor data, to search for patterns and to build application that can monitor real time streams efficiently. In his session at @ThingsExpo, ...
For basic one-to-one voice or video calling solutions, WebRTC has proven to be a very powerful technology. Although WebRTC’s core functionality is to provide secure, real-time p2p media streaming, leveraging native platform features and server-side components brings up new communication capabilities for web and native mobile applications, allowing for advanced multi-user use cases such as video broadcasting, conferencing, and media recording.
Verizon Communications Inc. (NYSE, Nasdaq: VZ) and Yahoo! Inc. (Nasdaq: YHOO) have entered into a definitive agreement under which Verizon will acquire Yahoo's operating business for approximately $4.83 billion in cash, subject to customary closing adjustments. Yahoo informs, connects and entertains a global audience of more than 1 billion monthly active users** -- including 600 million monthly active mobile users*** through its search, communications and digital content products. Yahoo also co...