Welcome!

Containers Expo Blog Authors: Liz McMillan, Pat Romanski, Yeshim Deniz, Elizabeth White, Zakia Bouachraoui

Related Topics: SDN Journal, Microservices Expo, Containers Expo Blog, @CloudExpo, @DXWorldExpo, @DevOpsSummit

SDN Journal: Blog Feed Post

Stop Conflating Software-Defined with Software-Deployed

Can we stop confusing these two, please? Kthanx.

Can we stop confusing these two, please? Kthanx.

For some reason when you start applying "software" as a modifier to anything traditionally deployed as hardware folks start thinking that means that hardware is going away. Software-defined networking (SDN) is no exception.

There's a big difference between being software-defined and software-deployed. The former implies the use of software - APIs and the like - to configure and manage something (in this case, the network). The latter implies service functionality deployed in a software form-factor, which could mean pure software or virtualized appliances.

These two are not the same by any stretch of the imagination. Software-defined networking - the use of software to control network devices - is not a new concept. It's been around for a long time. What is new with SDN is the demand to physically separate control and data planes and the use of a common, shared control-plane protocol or API (such as OpenFlow) through which to manage all network devices, regardless of vendor origins.

This abstraction is not new. If you look at SOA (Service-Oriented Architectures) or OO (Object-Oriented) anything, you'll see the same concepts as promoted by SDN: separation of implementation (data plane) from interface (control plane). The reason behind this model is simple: if you abstract interface from implementation, it is easier to change the implementation without impacting anything that touches the interface. In a nutshell, it's a proxy system that puts something between the consumer and the producer of the service. Usually this is transparent to the consumer, but in some cases wholesale change is necessary, as is true with SDN.

abstraction-in-sdx

The reality is that SDN does not require the use of software-deployed data path elements. What it requires is support for a common, shared software-defined mechanism  for interacting and controlling the configuration of the data path. Are there advantages to a software-deployed network element strategy? Certainly, especially when combined with a software-defined data center strategy. Agility, the ability to move toward a true utility model (cloud, anyone?), and rapid provisioning are among the benefits (though none of these are peculiar to software and can also be achieved using hardware elements, just not without a bit more planning and forethought).

The reason software-deployed seems to make more sense today is that it's usually associated with the ability to leverage resources laying around the data center on commodity hardware. Need more network? Grab some compute from that idle server over there and voila! More network.

The only difference, however, between this approach and a hardware-based approach is where the resources come from. Resources can be - and should be - abstracted such that whether they reside on commodity or purpose-built hardware shouldn't matter to the provisioning and management systems. The control system (the controller, in an SDN architecture) should be blind to the source of those resources. All it cares about is being able to control those resources the same way as all other resources it controls, whether derived from hardware or software.

So let us not continue to conflate software-defined with software-deployed. There is a significant difference between them and what they mean with respect to network and data center architecture.

More Stories By Lori MacVittie

Lori MacVittie is responsible for education and evangelism of application services available across F5’s entire product suite. Her role includes authorship of technical materials and participation in a number of community-based forums and industry standards organizations, among other efforts. MacVittie has extensive programming experience as an application architect, as well as network and systems development and administration expertise. Prior to joining F5, MacVittie was an award-winning Senior Technology Editor at Network Computing Magazine, where she conducted product research and evaluation focused on integration with application and network architectures, and authored articles on a variety of topics aimed at IT professionals. Her most recent area of focus included SOA-related products and architectures. She holds a B.S. in Information and Computing Science from the University of Wisconsin at Green Bay, and an M.S. in Computer Science from Nova Southeastern University.

IoT & Smart Cities Stories
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
The explosion of new web/cloud/IoT-based applications and the data they generate are transforming our world right before our eyes. In this rush to adopt these new technologies, organizations are often ignoring fundamental questions concerning who owns the data and failing to ask for permission to conduct invasive surveillance of their customers. Organizations that are not transparent about how their systems gather data telemetry without offering shared data ownership risk product rejection, regu...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
As IoT continues to increase momentum, so does the associated risk. Secure Device Lifecycle Management (DLM) is ranked as one of the most important technology areas of IoT. Driving this trend is the realization that secure support for IoT devices provides companies the ability to deliver high-quality, reliable, secure offerings faster, create new revenue streams, and reduce support costs, all while building a competitive advantage in their markets. In this session, we will use customer use cases...