Welcome!

Containers Expo Blog Authors: Liz McMillan, Pat Romanski, Yeshim Deniz, Elizabeth White, Zakia Bouachraoui

Related Topics: Containers Expo Blog, Java IoT, Microservices Expo, Linux Containers, SDN Journal

Containers Expo Blog: Blog Post

In-Memory Computing: In Plain English

Explaining in-memory computing and defining what in-memory computing is really about

After five days (and eleven meetings) with new customers in Europe, Russia, and the Middle East, I think time is right for another refinement of in-memory computing's definition. To me, it is clear that our industry is lagging when it comes to explaining in-memory computing to potential customers and defining what in-memory computing is really about. We struggle to come up with a simple, understandable definition of what in-memory computing is all about, what problems it solves, and what uses are a good fit for the technology.

In-Memory Computing: What Is It?
In-memory computing means using a type of middleware software that allows one to store data in RAM, across a cluster of computers, and process it in parallel. Consider operational datasets typically stored in a centralized database which you can now store in "connected" RAM across multiple computers. RAM, roughly, is 5,000 times faster than traditional spinning disk. Add to the mix native support for parallel processing, and things get very fast. Really, really, fast.

RAM storage and parallel distributed processing are two fundamental pillars of in-memory computing.

RAM storage and parallel distributed processing are two fundamental pillars of in-memory computing. While in-memory data storage is expected of in-memory technology, the parallelization and distribution of data processing, which is an integral part of in-memory computing, calls for an explanation.

Parallel distributed processing capabilities of in-memory computing are... a technical necessity. Consider this: a single modern computer can hardly have enough RAM to hold a significant dataset. In fact, a typical x86 server today (mid-2014) would have somewhere between 32GB to 256GB of RAM. Although this could be a significant amount of memory for a single computer, that's not enough to store many of today's operational datasets that easily measure in terabytes.

To overcome this problem in-memory computing software is designed from the ground up to store data in a distributed fashion, where the entire dataset is divided into individual computers' memory, each storing only a portion of the overall dataset. Once data is partitioned - parallel distributed processing becomes a technical necessity simply because data is stored this way.

And while it makes the development of in-memory computing software challenging (literally fewer than 10 companies in the world have mastered this type of software development) - end users of in-memory computing seeking dramatic performance and scalability increas benefit greatly from this technology.

In-Memory Computing: What Is It Good For?
Let's get this out of the way first: if one wants a 2-3x performance or scalability improvements - flash storage (SSD, Flash on PCI-E, Memory Channel Storage, etc.) can do the job. It is relatively cheap and can provide that kind of modest performance boost.

To see, however, what a difference in-memory computing can make, consider this real-live example...

Last year GridGain won an open tender for one of the largest banks in the world. The tender was for a risk analytics system to provide real-time analysis of risk for the bank's trading desk (common use case for in-memory computing in the financial industry). In this tender GridGain software demonstrated one billion (!) business transactions per second on 10 commodity servers with the total of 1TB of RAM. The total cost of these 10 commodity servers? Less than $25K.

Now, read the previous paragraph again: one billion financial transactions per second on $25K worth of hardware. That is the in-memory computing difference - not just 2-3x times faster; more than 100x faster than theoretically possible even with the most expensive flash-based storage available on today's market (forget about spinning disks). And 1TB of flash-based storage alone would cost 10x of entire hardware setup mentioned.

Importantly, that performance translates directly into the clear business value:

  • you can use less hardware to support the required performance and throughput SLAs, get better data center consolidation, and significantly reduce capital costs, as well as operational and infrastructure overhead, and
  • you can also significantly extend the lifetime of your existing hardware and software by getting increased performance and improve its ROI by using what you already have longer and making it go faster.

And that's what makes in-memory computing such a hot topic these days: the demand to process ever growing datasets in real-time can now be fulfilled with the extraordinary performance and scale of in-memory computing, with economics so compelling that the business case becomes clear and obvious.

In-Memory Computing: What Are the Best Use Cases?
I can only speak for GridGain here but our user base is big enough to be statistically significant. GridGain has production customers in a wide variety of industries:

  • Investment banking
  • Insurance claim processing & modeling
  • Real-time ad platforms
  • Real-time sentiment analysis
  • Merchant platform for online games
  • Hyper-local advertising
  • Geospatial/GIS processing
  • Medical imaging processing
  • Natural language processing & cognitive computing
  • Real-time machine learning
  • Complex event processing of streaming sensor data

And we're also seeing our solutions deployed for more mundane use cases, like speeding the response time of a student registration system from 45 seconds to under a half-second.

By looking at this list it becomes pretty obvious that the best use cases are defined not by specific industry but by the underlying technical need, i.e. the need to get the ultimate best and uncompromised performance and scalability for a given task.

In many of these real-life deployments in-memory computing was an enabling technology, the technology that made these particular systems possible to consider and ultimately possible to implement.

The bottom line is that in-memory computing is beginning to unleash a wave of innovation that's not built on Big Data per se, but on Big Ideas, ideas that are suddenly attainable. It's blowing up the costly economics of traditional computing that frankly can't keep up with either the growth of information or the scale of demand.

As the Internet expands from connecting people to connecting things, devices like refrigerators, thermostats, light bulbs, jet engines and even heart rate monitors are producing streams of information that will not just inform us, but also protect us, make us healthier and help us live richer lives. We'll begin to enjoy conveniences and experiences that only existed in science fiction novels. The technology to support this transformation exists today - and it's called in-memory computing.

More Stories By Nikita Ivanov

Nikita Ivanov is founder and CEO of GridGain Systems, started in 2007 and funded by RTP Ventures and Almaz Capital. Nikita has led GridGain to develop advanced and distributed in-memory data processing technologies – the top Java in-memory computing platform starting every 10 seconds around the world today.

Nikita has over 20 years of experience in software application development, building HPC and middleware platforms, contributing to the efforts of other startups and notable companies including Adaptec, Visa and BEA Systems. Nikita was one of the pioneers in using Java technology for server side middleware development while working for one of Europe’s largest system integrators in 1996.

He is an active member of Java middleware community, contributor to the Java specification, and holds a Master’s degree in Electro Mechanics from Baltic State Technical University, Saint Petersburg, Russia.

IoT & Smart Cities Stories
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
The explosion of new web/cloud/IoT-based applications and the data they generate are transforming our world right before our eyes. In this rush to adopt these new technologies, organizations are often ignoring fundamental questions concerning who owns the data and failing to ask for permission to conduct invasive surveillance of their customers. Organizations that are not transparent about how their systems gather data telemetry without offering shared data ownership risk product rejection, regu...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
As IoT continues to increase momentum, so does the associated risk. Secure Device Lifecycle Management (DLM) is ranked as one of the most important technology areas of IoT. Driving this trend is the realization that secure support for IoT devices provides companies the ability to deliver high-quality, reliable, secure offerings faster, create new revenue streams, and reduce support costs, all while building a competitive advantage in their markets. In this session, we will use customer use cases...