Welcome!

Containers Expo Blog Authors: Pat Romanski, Elizabeth White, Liz McMillan, Yeshim Deniz, Ravi Rajamiyer

Related Topics: @CloudExpo, Java IoT, Microservices Expo, Linux Containers, Containers Expo Blog, @DXWorldExpo

@CloudExpo: Article

Take Control of Your Schemalessness with Dynamic Schemas

Addressing the inflexibility of structured data by enabling schemaless data to be dynamically and logically structured

Static data structures have been at the heart of data processing tools since the dawn of computing, but they have always limited the flexibility of the organization leveraging the data. Recently, the rise of flexible formats like JSON have led to schemaless data as an attempt to increase agility. However, schemaless data have proven difficult to work with, because of hidden rigid structure in the form of implied schemas.

EnterpriseWeb addresses the problems of both the inflexibility of structured data as well as the impracticality of schemaless data, by enabling schemaless data to be dynamically and logically structured.

From the fixed-length fields of the 1950s, to the relational structures of modern database management systems, to the semistructured data formats XML and JSON, the structure of our data has always informed code about how it should be processed. Data are defined by their relationships, and we used to hard-code those relationships into rigid structures. That approach allows only one static view, which is difficult to work with, and even more difficult to change. Nevertheless, such rigid data structures - and the models that represent them - are an integral part of enterprise information management.

Traditional relational database management systems (RDBMSs) exemplify this point with their static entity-relationship models (ERMs) and tightly interconnected data structures. XML improves this situation slightly, allowing semi-structured information, but schemas still constrain flexibility and performance. With both approaches, fixed definitions, views, and reports limit the ability for businesses to freely transform information into insight and become obstacles to systemwide change.

The Rise of Schemalessness
This challenge of inflexible data structures has given rise to schemaless data. With JSON in particular, we can create whatever data structure we like when we author data. We don't have to shoehorn data into rigid data structures, thus allowing every record to have its own structure.

But there is a problem with schemaless data. Consider this simple task: how do you create a query for all the addresses in a particular Zip Code if every record has a different name or format for Zip Code? Schemalessness, after all, isn't magic - even schemaless data require some kind of metadata so the code will know how to process such information, what software development guru Martin Fowler calls an implied schema.

Implied schemas represent the structure inherent in any data record. If each address record has its own format, then that format provides the implied schema for that record. Dealing with implied schemas thus falls to the developer, who must figure out how to code software to process these implied schemas, which are different for each and every record.

In Fowler's tutorial on schemalessness, he explains the pros and cons of implied schemas. Despite acknowledging the power of schemalessness to support more flexible and responsive user experiences, he recommends avoiding it and implied schemas for developer convenience. Good advice with respect to traditional software, but the world of data is changing. Today we live in an increasingly schemaless world, where more often than not, the structure of our data is fluid or nonexistent.

Raising the Discussion to Dynamic Schemas
Fowler makes it clear that in the past it has been impractical from the developer's perspective to work systematically with schemaless data, because implied schemas are difficult to deal with. After all, structure is itself useful, and isn't the problem per se. Rather, how to avoid the limitations of static structure without falling into the trap of unmanageable schemaless data that is the real challenge.

EnterpriseWeb's unique approach to modeling solves this critically important challenge by leveraging dynamic schemas that have flexible, metadata-driven relationships with underlying information. Using metadata this way separates concerns, letting people consider relationships from multiple perspectives, rather than from a single static point of view. In addition, it's now possible to change and extend metadata to meet diverse business needs without disruption.

Instead of settling for complex ERMs with their inflexible, tightly coupled data structures or dealing with the coding complexities of implied schemas, developers can project dynamic schemas from the metadata simply by writing different transformations. As a result, dynamic schemas are developer friendly and dynamic - a welcome change from the difficult problem of schemalessness.

Add an Agent for Performance
So far so good, but how do we build software to process all such data in a general way, freeing ourselves from custom coding for implicit schemas? The solution is an intelligent agent.

EnterpriseWeb's intelligent agent, SmartAlex™, is a distributable transaction manager that resolves dynamic schemas for each interaction. Every human or system client interaction is a request for SmartAlex to interpret dynamic schemas (as well as other models and additional metadata) and translate them to a context-specific set of resources in order to construct a custom response.

This Agent-Oriented approach maximizes performance for such dynamic computing. In the background, SmartAlex handles all run time connection and transformation details, sparing programmers from manually integrating resources for varied and unanticipated uses, greatly improving IT productivity while enabling business agility.

SmartAlex logs all system events, indexes all new and updated resources, and tags all changes in relationships for detailed and navigable audit history. This practice creates a feedback loop as SmartAlex leverages the same indexed logs to guide its execution. Data, code, and user interface components, as well as connectors for federated services, systems, databases, and devices, can be updated or replaced without breaking related apps and processes - as SmartAlex is ‘aware' of the changes. In this way EnterpriseWeb supports real time exception and change management for resilient solutions that can evolve naturally.

The EnterpriseWeb Take
Schemalessness was a reaction to the limitations of structured data. People struggled with the constraints of static structure, and figured that if they simply got rid of structure, then the problem would go away. But this move was merely a shell game, as the limitations of fixed schemas shifted to implied schemas, now without the benefits of structure to inform the code responsible for their processing.

The solution is to raise the level of abstraction, and instead of arguing over fixed vs. implied schemas, to work at the dynamic schema level. Such an approach is model-driven, allowing application designers to build models that capture their data structures, and allowing an intelligent agent to use the metadata each model represents to meet the specific needs of each interaction. The real lesson here is that the solution to resolving the challenge of schemalessness combines both dynamic schemas and the action of the agent. Stay tuned to my next newsletter for more information.

More Stories By Jason Bloomberg

Jason Bloomberg is a leading IT industry analyst, Forbes contributor, keynote speaker, and globally recognized expert on multiple disruptive trends in enterprise technology and digital transformation. He is ranked #5 on Onalytica’s list of top Digital Transformation influencers for 2018 and #15 on Jax’s list of top DevOps influencers for 2017, the only person to appear on both lists.

As founder and president of Agile Digital Transformation analyst firm Intellyx, he advises, writes, and speaks on a diverse set of topics, including digital transformation, artificial intelligence, cloud computing, devops, big data/analytics, cybersecurity, blockchain/bitcoin/cryptocurrency, no-code/low-code platforms and tools, organizational transformation, internet of things, enterprise architecture, SD-WAN/SDX, mainframes, hybrid IT, and legacy transformation, among other topics.

Mr. Bloomberg’s articles in Forbes are often viewed by more than 100,000 readers. During his career, he has published over 1,200 articles (over 200 for Forbes alone), spoken at over 400 conferences and webinars, and he has been quoted in the press and blogosphere over 2,000 times.

Mr. Bloomberg is the author or coauthor of four books: The Agile Architecture Revolution (Wiley, 2013), Service Orient or Be Doomed! How Service Orientation Will Change Your Business (Wiley, 2006), XML and Web Services Unleashed (SAMS Publishing, 2002), and Web Page Scripting Techniques (Hayden Books, 1996). His next book, Agile Digital Transformation, is due within the next year.

At SOA-focused industry analyst firm ZapThink from 2001 to 2013, Mr. Bloomberg created and delivered the Licensed ZapThink Architect (LZA) Service-Oriented Architecture (SOA) course and associated credential, certifying over 1,700 professionals worldwide. He is one of the original Managing Partners of ZapThink LLC, which was acquired by Dovel Technologies in 2011.

Prior to ZapThink, Mr. Bloomberg built a diverse background in eBusiness technology management and industry analysis, including serving as a senior analyst in IDC’s eBusiness Advisory group, as well as holding eBusiness management positions at USWeb/CKS (later marchFIRST) and WaveBend Solutions (now Hitachi Consulting), and several software and web development positions.

IoT & Smart Cities Stories
The hierarchical architecture that distributes "compute" within the network specially at the edge can enable new services by harnessing emerging technologies. But Edge-Compute comes at increased cost that needs to be managed and potentially augmented by creative architecture solutions as there will always a catching-up with the capacity demands. Processing power in smartphones has enhanced YoY and there is increasingly spare compute capacity that can be potentially pooled. Uber has successfully ...
Cloud computing delivers on-demand resources that provide businesses with flexibility and cost-savings. The challenge in moving workloads to the cloud has been the cost and complexity of ensuring the initial and ongoing security and regulatory (PCI, HIPAA, FFIEC) compliance across private and public clouds. Manual security compliance is slow, prone to human error, and represents over 50% of the cost of managing cloud applications. Determining how to automate cloud security compliance is critical...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
Disruption, Innovation, Artificial Intelligence and Machine Learning, Leadership and Management hear these words all day every day... lofty goals but how do we make it real? Add to that, that simply put, people don't like change. But what if we could implement and utilize these enterprise tools in a fast and "Non-Disruptive" way, enabling us to glean insights about our business, identify and reduce exposure, risk and liability, and secure business continuity?
The Internet of Things is clearly many things: data collection and analytics, wearables, Smart Grids and Smart Cities, the Industrial Internet, and more. Cool platforms like Arduino, Raspberry Pi, Intel's Galileo and Edison, and a diverse world of sensors are making the IoT a great toy box for developers in all these areas. In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists discussed what things are the most important, which will have the most profound e...
Chris Matthieu is the President & CEO of Computes, inc. He brings 30 years of experience in development and launches of disruptive technologies to create new market opportunities as well as enhance enterprise product portfolios with emerging technologies. His most recent venture was Octoblu, a cross-protocol Internet of Things (IoT) mesh network platform, acquired by Citrix. Prior to co-founding Octoblu, Chris was founder of Nodester, an open-source Node.JS PaaS which was acquired by AppFog and ...
In today's enterprise, digital transformation represents organizational change even more so than technology change, as customer preferences and behavior drive end-to-end transformation across lines of business as well as IT. To capitalize on the ubiquitous disruption driving this transformation, companies must be able to innovate at an increasingly rapid pace.
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
"MobiDev is a Ukraine-based software development company. We do mobile development, and we're specialists in that. But we do full stack software development for entrepreneurs, for emerging companies, and for enterprise ventures," explained Alan Winters, U.S. Head of Business Development at MobiDev, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
The explosion of new web/cloud/IoT-based applications and the data they generate are transforming our world right before our eyes. In this rush to adopt these new technologies, organizations are often ignoring fundamental questions concerning who owns the data and failing to ask for permission to conduct invasive surveillance of their customers. Organizations that are not transparent about how their systems gather data telemetry without offering shared data ownership risk product rejection, regu...