Welcome!

Virtualization Authors: Pat Romanski, Carmen Gonzalez, Elizabeth White, David H Deans, Lori MacVittie

Related Topics: Virtualization

Virtualization: Article

Virtualization for High Performance Computing

Aggregation, the next logical step forward

To understand where the High Performance Computing (HPC) paradigm is headed, it is useful to understand its history. High performance in computing comes from parallelism and faster and denser circuitry. Seymour Cray was a pioneer in this field and introduced the first production supercomputers in the 1960s (CDC 6600) and 1970s (Cray 1). Cray Research established the modern-day supercomputer architecture through multiprocessor (XMP) architecture and the vector processor. Other computer manufacturers adopted this architecture in the early 1980s.

It became evident with the advent of the modern microprocessor that clusters of microprocessors would challenge the dominance of vector supercomputers. In the second half of the 1980s, Encore and Sequent were building shared-memory systems that created a shared bus so that any of the microprocessors could access all of the memory in the system. By 2001, clusters and shared-memory systems based on microprocessors constituted 90% of the Top 500 machines, compared to 10% for vector-based machines.

The Beowulf project pioneered the idea of using cheap off-the-shelf hardware and software configured as a cluster of machines to build high-performance computers. By the early 2000s, this concept had become very successful in the industry, with the unification of public domain parallel tools (MPI programming model, PVM programming, parallel file system, tools to configure, manage parallel applications) and commercial applications for the scientific community. Cluster computing adopted commodity microprocessors (Intel) and the Linux operating system.

Today more than 70% of the newly installed HPC systems utilize commodity x86 clusters, with the remainder using shared-memory systems. Shared-memory systems have been losing out to clusters in HPC for a number of years, and this trend is driven by two factors. The advantage of cluster systems is the low initial acquisition cost of the hardware and absence of vendor lock-in. They are significantly cheaper and offer better performance than the large SMP systems that typically run on proprietary Unix platforms. Most commercial HPC applications today are designed to run on cluster infrastructures.

One interesting question one could ask is why there hasn't been a proliferation of x86-based shared-memory SMP systems to replace Unix-based SMP systems. It's driven by two factors. The first one is economic. Given the commoditization of x86 systems, innovation has suffered at the system level, given the lack of differentiation and low profit margins. The second reason pertains to the fact that the system-level companies have no control over the chip vendors and there's a significant mismatch between chip-level and system-level product and development lifecycles. The x86 architecture evolves according to Moore's Law and a new generation is spawned every 18 months, while it takes about three years to design a state-of-the art x86 SMP. This makes it very difficult for the system designers to plan or predict what type of chip will be available in three years time.

There's a downside to cluster computing. The disadvantage is the complexity of installation and ongoing management of the infrastructure, as well as the restrictions put on end users because of the programming model.

Installation & Ongoing Management Costs
These cluster solutions are significantly more expensive to deploy and manage compared to large server systems, requiring:

  • OS per server: Higher OS deployment cost and complexity such as network boot or other centralized OS deployment techniques, resulting in a need for higher IT skill sets
  • Solution for shared I/O: Providing the application with access to common storage requires a cluster file system, and SAN or NAS deployments. Achieving high-performance I/O with such solutions is still a work in progress in the marketplace today
  • Application provisioning: Load-balancing and distributed resource management solutions are needed to accommodate proper scheduling and resource management
  • Cluster interconnect: A dedicated network for intra-cluster communication is required to provide high bandwidth and low latency for application-level communication. This network is usually separate from the network the cluster uses to communicate with the outside world (such as users)

Programming Model
Besides complexity, cluster deployment poses two challenges at the application level:

  • Programming model: A specific programming model is needed to accommodate the distributed nature of the computing resource. This is usually achieved via MPI programming. In-house or legacy code has to be modified to run on such systems.
  • Lack of large memory footprint: Each processor can access only the "cluster" node's local memory, which is usually limited to keep the physical size (leveraging 1U systems) and the cost of the cluster to a minimum. This poses a significant challenge to applications that use large memory in some processing phases, requiring an additional system with a large amount of local memory for these application phases. This is usually referred to as "cluster head node," and requires additional programming efforts or application provisioning techniques to accommodate the need to run different application phases on different computing resources.

Aggregation: The New Virtualization Paradigm
Computing virtualization is a technique for hiding the physical characteristics of a compute resource from the operating system, applications, or end users interacting with that compute resource.

There are two types of computing virtualization paradigms in the market today:

  1. Server virtualization: A single physical server appears to function as multiple logical (virtual) servers. It could also be defined as partitioning.
  2. Desktop virtualization: The physical location of the PC desktop is separated from the user accessing the PC. The remotely accessed PC can be located at home, the office or the data center, while the user is located elsewhere. It could also be defined as remoting.

There is a new emerging, third kind of computing virtualization: high-end virtualization in which multiple physical systems appear to function as a single logical system. This virtualization paradigm is known as aggregation and it is basically the opposite of partitioning. The building blocks of this approach are the same x86 industry standard servers used in the scale-out (clustering) approach, preserving the low cost. In addition, by running a single logical system, customers manage a single operating system, and take advantage of large contiguous memory and unified I/O architecture.

Benefits of Aggregation
Large Memory System
For workloads that require a large contiguous memory, customers have traditionally used the scale-up approach. Aggregation provides a cost-effective alternative to buying expensive and large proprietary shared-memory systems for such workloads. It enables an application requiring large amounts memory to leverage the memory of multiple systems, and reduce the need to use a hard drive for swap or scratch space. Application runtime can be dramatically reduced by running simulations with in-core solvers or by using memory instead of swap for large-memory footprint models.

Aggregation thus provides a cost-effective virtual x86 platform with a large shared memory that minimizes the physical infrastructure requirements and can run both distributed applications, as well as applications requiring a large memory footprint at optimal performance on the same physical infrastructure.

Compute-Intensive, Shared-Memory Applications
For workloads that require a high core count coupled with shared memory, customers have traditionally used proprietary shared-memory systems. Aggregation provides a cost-effective x86 alternative to these expensive and proprietary RISC systems.

Aggregation technology combines memory bandwidth across boards, as opposed to traditional SMP or NUMA architecture where memory bandwidth decreases as the machine scales. This enables solutions based on aggregation technology to show close-to-linear memory bandwidth scaling, thereby delivering excellent performance for threaded applications.

Ease of Use
For workloads that otherwise require a scale-out approach, the primary value provided by aggregation technology is ease-of-use driven by having a single system to manage compared the complexities involved with managing a cluster. A single system removes the need for cluster file systems, cluster interconnect issues, application provisioning, and installation and update of multiple operating systems and applications. The use of one operating system instead of one per node, results in significant savings in time and money during installation, as well as on-going management costs.

Simplified I/O Architecture
I/O requirements for a scale-out model can be very complex and costly involving networked storage with accompanying costs related to additional HBAs and FC switch infrastructure. Aggregation technology consolidates each individual server's network and storage interfaces. I/O resource consolidation reduces the number of drivers, HBAs, NICs, cables, and switch ports, and all the associated maintenance overhead. The user needs fewer I/O devices to purchase, manage, and service with increased availability, resiliency, and runtime scalability of I/O resources.

Improved Utilization
Even in large cluster deployments in data centers, it makes sense to deploy aggregation, since fewer larger nodes mean less cluster complexity and better utilization of the infrastructure due to reduced fragmentation of the resources. An example can be found in the financial services industry, where organizations need to run hundreds or thousands of simulations at once. A common deployment model will involve hundreds of servers, where each will execute a few simulations. In this example, each cluster node is running a single application at 80% utilization. By using aggregation to create fewer larger nodes, every four aggregated systems can run another copy of the application, leveraging the underutilized resources and driving an additional 25% utilization.

Summary
The future of High Performance Computing is here and aggregation represents the next logical step forward on this journey for better performance, lower cost, and complexity. It addresses the fundamental limitation of clusters in that they perform poorly on applications that require large shared memory. It also addresses the fundamental barriers many technical computing customers face when adopting clusters due to the lack of appropriate IT skills to install and manage clusters. And it addresses the limitations of the traditional SMP systems of high cost and vendor lock-in.

Aggregation works well for compute-intensive applications (numerical and engineering simulations) and memory-intensive applications (very large modeling and business intelligence).

The benefits of this approach are cluster consolidation and infrastructure optimization (reducing the number of managed entities), improved utilization (reducing data center fragmentation), and physical infrastructure cost reduction (traditional SMP systems, unified I/O) as well as greener computing. The result is fewer systems to manage and a large shared-memory system at industry-standard cluster pricing.

More Stories By Shai Fultheim

As founder and CEO of ScaleMP, Shai Fultheim designed and architected the core technology behind the company, and is now responsible for its strategy and direction. He has more than 15 years of experience in technology and business roles, including a few years on the IT end-user side. Before founding ScaleMP, Shai was CTO of BRM Capital, a first-tier Israeli venture capital firm. Prior to BRM, he was co-founder, CTO, and VP R&D at several technology startups. He has also served in the Israeli Defense Force's entral intelligence unit, where he led a large IT organization. He holds a bachelor of technology and applied science from the Jerusalem College of Technology. Shai has been an active member of several open source initiatives such as Apache, Jakarta Tomcat, Amanda and the Linux kernel.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
DevOps Summit 2015 New York, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that it is now accepting Keynote Proposals. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development cycles that produce software that is obsolete at launch. DevOps may be disruptive, but it is essential.
Avnet, Inc. has announced that it ranked No. 4 on the InformationWeek Elite 100 – a list of the top business technology innovators in the U.S. Avnet was recognized for the development of an innovative cloud-based training system that serves as the foundation for Avnet Academy – the company’s education and training organization focused on technical training around top IT vendor technologies. The development of this system allowed Avnet to quickly expand its IT-related training capabilities around the world, while creating a new service that Avnet and its IT solution providers can offer to their...
SYS-CON Events announced today that B2Cloud, a provider of enterprise resource planning software, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. B2cloud develops the software you need. They have the ideal tools to help you work with your clients. B2Cloud’s main solutions include AGIS – ERP, CLOHC, AGIS – Invoice, and IZUM
The Internet of Things Maturity Model (IoTMM) is a qualitative method to gauge the growth and increasing impact of IoT capabilities in an IT environment from both a business and technology perspective. In his session at @ThingsExpo, Tony Shan will first scan the IoT landscape and investigate the major challenges and barriers. The key areas of consideration are identified to get started with IoT journey. He will then pinpoint the need of a tool for effective IoT adoption and implementation, which leads to IoTMM in which five maturity levels are defined: Advanced, Dynamic, Optimized, Primitive,...
With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo in Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be! Internet of @ThingsExpo, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 17th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The Internet of Things (IoT) is the most profound change in personal an...
There is no doubt that Big Data is here and getting bigger every day. Building a Big Data infrastructure today is no easy task. There are an enormous number of choices for database engines and technologies. To make things even more challenging, requirements are getting more sophisticated, and the standard paradigm of supporting historical analytics queries is often just one facet of what is needed. As Big Data growth continues, organizations are demanding real-time access to data, allowing immediate and actionable interpretation of events as they happen. Another aspect concerns how to deliver ...
Enterprise IoT is an exciting and chaotic space with a lot of potential to transform how the enterprise resources are managed. In his session at @ThingsExpo, Hari Srinivasan, Sr Product Manager at Cisco, will describe the challenges in enabling mass adoption of IoT, and share perspectives and insights on architectures/standards/protocols that are necessary to build a healthy ecosystem and lay the foundation to for a wide variety of exciting IoT use cases in the years to come.
The world's leading Cloud event, Cloud Expo has launched Microservices Journal on the SYS-CON.com portal, featuring over 19,000 original articles, news stories, features, and blog entries. DevOps Journal is focused on this critical enterprise IT topic in the world of cloud computing. Microservices Journal offers top articles, news stories, and blog posts from the world's well-known experts and guarantees better exposure for its authors than any other publication. Follow new article posts on Twitter at @MicroservicesE
Containers and microservices have become topics of intense interest throughout the cloud developer and enterprise IT communities. Accordingly, attendees at the upcoming 16th Cloud Expo at the Javits Center in New York June 9-11 will find fresh new content in a new track called PaaS | Containers & Microservices Containers are not being considered for the first time by the cloud community, but a current era of re-consideration has pushed them to the top of the cloud agenda. With the launch of Docker's initial release in March of 2013, interest was revved up several notches. Then late last...
So I guess we’ve officially entered a new era of lean and mean. I say this with the announcement of Ubuntu Snappy Core, “designed for lightweight cloud container hosts running Docker and for smart devices,” according to Canonical. “Snappy Ubuntu Core is the smallest Ubuntu available, designed for security and efficiency in devices or on the cloud.” This first version of Snappy Ubuntu Core features secure app containment and Docker 1.6 (1.5 in main release), is available on public clouds, and for ARM and x86 devices on several IoT boards. It’s a Trend! This announcement comes just as...
WebRTC defines no default signaling protocol, causing fragmentation between WebRTC silos. SIP and XMPP provide possibilities, but come with considerable complexity and are not designed for use in a web environment. In his session at @ThingsExpo, Matthew Hodgson, technical co-founder of the Matrix.org, discussed how Matrix is a new non-profit Open Source Project that defines both a new HTTP-based standard for VoIP & IM signaling and provides reference implementations.
The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, and physical persons. In the IoT vision, every new "thing" - sensor, actuator, data source, data con...
It's time to put the "Thing" back in IoT. Whether it’s drones, robots, self-driving cars, ... There are multiple incredible examples of the power of IoT nowadays that are shadowed by announcements of yet another twist on statistics, databases, .... Sorry, I meant, Big Data(TM), tiered storage(TM), complex systems(TM), smart nations(TM), .... In his session at WebRTC Summit, Dr Alex Gouaillard, CTO and Co-Founder of Temasys, will discuss the concrete, cool, examples of IoT already happening today, and how mixing all those different sources of visual and audio input can make your life happier ...
The Internet of Things is not new. Historically, smart businesses have used its basic concept of leveraging data to drive better decision making and have capitalized on those insights to realize additional revenue opportunities. So, what has changed to make the Internet of Things one of the hottest topics in tech? In his session at @ThingsExpo, Chris Gray, Director, Embedded and Internet of Things, discussed the underlying factors that are driving the economics of intelligent systems. Discover how hardware commoditization, the ubiquitous nature of connectivity, and the emergence of Big Data a...
SYS-CON Events announced today the IoT Bootcamp – Jumpstart Your IoT Strategy, being held June 9–10, 2015, in conjunction with 16th Cloud Expo and Internet of @ThingsExpo at the Javits Center in New York City. This is your chance to jumpstart your IoT strategy. Combined with real-world scenarios and use cases, the IoT Bootcamp is not just based on presentations but includes hands-on demos and walkthroughs. We will introduce you to a variety of Do-It-Yourself IoT platforms including Arduino, Raspberry Pi, BeagleBone, Spark and Intel Edison. You will also get an overview of cloud technologies s...
SYS-CON Media announced today that @WebRTCSummit Blog, the largest WebRTC resource in the world, has been launched. @WebRTCSummit Blog offers top articles, news stories, and blog posts from the world's well-known experts and guarantees better exposure for its authors than any other publication. @WebRTCSummit Blog can be bookmarked ▸ Here @WebRTCSummit conference site can be bookmarked ▸ Here
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
The WebRTC Summit 2015 New York, to be held June 9-11, 2015, at the Javits Center in New York, NY, announces that its Call for Papers is open. Topics include all aspects of improving IT delivery by eliminating waste through automated business models leveraging cloud technologies. WebRTC Summit is co-located with 16th International Cloud Expo, @ThingsExpo, Big Data Expo, and DevOps Summit.
Chuck Piluso will present a study of cloud adoption trends and the power and flexibility of IBM Power and Pureflex cloud solutions. Speaker Bio: Prior to Data Storage Corporation (DSC), Mr. Piluso founded North American Telecommunication Corporation, a facilities-based Competitive Local Exchange Carrier licensed by the Public Service Commission in 10 states, serving as the company's chairman and president from 1997 to 2000. Between 1990 and 1997, Mr. Piluso served as chairman & founder of International Telecommunications Corporation, a facilities-based international carrier licensed by t...
There are lots of challenges in IoT around secure, scalable and business friendly infrastructure for enterprises. For large corporations, IoT implementations are one of the top priorities of the decade. All industries are seeing a competitive need to sustain by investing in IoT initiatives. The value addition comes from improved customer service, innovative product and additional revenue streams. The data from these IP-connected devices can be leveraged for a variety of business applications as well as responsive action controls. The various architectural building blocks of an IoT ...