Welcome!

Containers Expo Blog Authors: Elizabeth White, Pat Romanski, Roger Strukhoff, Dana Gardner, Automic Blog

Related Topics: Containers Expo Blog

Containers Expo Blog: Article

Virtualization for High Performance Computing

Aggregation, the next logical step forward

To understand where the High Performance Computing (HPC) paradigm is headed, it is useful to understand its history. High performance in computing comes from parallelism and faster and denser circuitry. Seymour Cray was a pioneer in this field and introduced the first production supercomputers in the 1960s (CDC 6600) and 1970s (Cray 1). Cray Research established the modern-day supercomputer architecture through multiprocessor (XMP) architecture and the vector processor. Other computer manufacturers adopted this architecture in the early 1980s.

It became evident with the advent of the modern microprocessor that clusters of microprocessors would challenge the dominance of vector supercomputers. In the second half of the 1980s, Encore and Sequent were building shared-memory systems that created a shared bus so that any of the microprocessors could access all of the memory in the system. By 2001, clusters and shared-memory systems based on microprocessors constituted 90% of the Top 500 machines, compared to 10% for vector-based machines.

The Beowulf project pioneered the idea of using cheap off-the-shelf hardware and software configured as a cluster of machines to build high-performance computers. By the early 2000s, this concept had become very successful in the industry, with the unification of public domain parallel tools (MPI programming model, PVM programming, parallel file system, tools to configure, manage parallel applications) and commercial applications for the scientific community. Cluster computing adopted commodity microprocessors (Intel) and the Linux operating system.

Today more than 70% of the newly installed HPC systems utilize commodity x86 clusters, with the remainder using shared-memory systems. Shared-memory systems have been losing out to clusters in HPC for a number of years, and this trend is driven by two factors. The advantage of cluster systems is the low initial acquisition cost of the hardware and absence of vendor lock-in. They are significantly cheaper and offer better performance than the large SMP systems that typically run on proprietary Unix platforms. Most commercial HPC applications today are designed to run on cluster infrastructures.

One interesting question one could ask is why there hasn't been a proliferation of x86-based shared-memory SMP systems to replace Unix-based SMP systems. It's driven by two factors. The first one is economic. Given the commoditization of x86 systems, innovation has suffered at the system level, given the lack of differentiation and low profit margins. The second reason pertains to the fact that the system-level companies have no control over the chip vendors and there's a significant mismatch between chip-level and system-level product and development lifecycles. The x86 architecture evolves according to Moore's Law and a new generation is spawned every 18 months, while it takes about three years to design a state-of-the art x86 SMP. This makes it very difficult for the system designers to plan or predict what type of chip will be available in three years time.

There's a downside to cluster computing. The disadvantage is the complexity of installation and ongoing management of the infrastructure, as well as the restrictions put on end users because of the programming model.

Installation & Ongoing Management Costs
These cluster solutions are significantly more expensive to deploy and manage compared to large server systems, requiring:

  • OS per server: Higher OS deployment cost and complexity such as network boot or other centralized OS deployment techniques, resulting in a need for higher IT skill sets
  • Solution for shared I/O: Providing the application with access to common storage requires a cluster file system, and SAN or NAS deployments. Achieving high-performance I/O with such solutions is still a work in progress in the marketplace today
  • Application provisioning: Load-balancing and distributed resource management solutions are needed to accommodate proper scheduling and resource management
  • Cluster interconnect: A dedicated network for intra-cluster communication is required to provide high bandwidth and low latency for application-level communication. This network is usually separate from the network the cluster uses to communicate with the outside world (such as users)

Programming Model
Besides complexity, cluster deployment poses two challenges at the application level:

  • Programming model: A specific programming model is needed to accommodate the distributed nature of the computing resource. This is usually achieved via MPI programming. In-house or legacy code has to be modified to run on such systems.
  • Lack of large memory footprint: Each processor can access only the "cluster" node's local memory, which is usually limited to keep the physical size (leveraging 1U systems) and the cost of the cluster to a minimum. This poses a significant challenge to applications that use large memory in some processing phases, requiring an additional system with a large amount of local memory for these application phases. This is usually referred to as "cluster head node," and requires additional programming efforts or application provisioning techniques to accommodate the need to run different application phases on different computing resources.

Aggregation: The New Virtualization Paradigm
Computing virtualization is a technique for hiding the physical characteristics of a compute resource from the operating system, applications, or end users interacting with that compute resource.

There are two types of computing virtualization paradigms in the market today:

  1. Server virtualization: A single physical server appears to function as multiple logical (virtual) servers. It could also be defined as partitioning.
  2. Desktop virtualization: The physical location of the PC desktop is separated from the user accessing the PC. The remotely accessed PC can be located at home, the office or the data center, while the user is located elsewhere. It could also be defined as remoting.

There is a new emerging, third kind of computing virtualization: high-end virtualization in which multiple physical systems appear to function as a single logical system. This virtualization paradigm is known as aggregation and it is basically the opposite of partitioning. The building blocks of this approach are the same x86 industry standard servers used in the scale-out (clustering) approach, preserving the low cost. In addition, by running a single logical system, customers manage a single operating system, and take advantage of large contiguous memory and unified I/O architecture.

Benefits of Aggregation
Large Memory System
For workloads that require a large contiguous memory, customers have traditionally used the scale-up approach. Aggregation provides a cost-effective alternative to buying expensive and large proprietary shared-memory systems for such workloads. It enables an application requiring large amounts memory to leverage the memory of multiple systems, and reduce the need to use a hard drive for swap or scratch space. Application runtime can be dramatically reduced by running simulations with in-core solvers or by using memory instead of swap for large-memory footprint models.

Aggregation thus provides a cost-effective virtual x86 platform with a large shared memory that minimizes the physical infrastructure requirements and can run both distributed applications, as well as applications requiring a large memory footprint at optimal performance on the same physical infrastructure.

Compute-Intensive, Shared-Memory Applications
For workloads that require a high core count coupled with shared memory, customers have traditionally used proprietary shared-memory systems. Aggregation provides a cost-effective x86 alternative to these expensive and proprietary RISC systems.

Aggregation technology combines memory bandwidth across boards, as opposed to traditional SMP or NUMA architecture where memory bandwidth decreases as the machine scales. This enables solutions based on aggregation technology to show close-to-linear memory bandwidth scaling, thereby delivering excellent performance for threaded applications.

Ease of Use
For workloads that otherwise require a scale-out approach, the primary value provided by aggregation technology is ease-of-use driven by having a single system to manage compared the complexities involved with managing a cluster. A single system removes the need for cluster file systems, cluster interconnect issues, application provisioning, and installation and update of multiple operating systems and applications. The use of one operating system instead of one per node, results in significant savings in time and money during installation, as well as on-going management costs.

Simplified I/O Architecture
I/O requirements for a scale-out model can be very complex and costly involving networked storage with accompanying costs related to additional HBAs and FC switch infrastructure. Aggregation technology consolidates each individual server's network and storage interfaces. I/O resource consolidation reduces the number of drivers, HBAs, NICs, cables, and switch ports, and all the associated maintenance overhead. The user needs fewer I/O devices to purchase, manage, and service with increased availability, resiliency, and runtime scalability of I/O resources.

Improved Utilization
Even in large cluster deployments in data centers, it makes sense to deploy aggregation, since fewer larger nodes mean less cluster complexity and better utilization of the infrastructure due to reduced fragmentation of the resources. An example can be found in the financial services industry, where organizations need to run hundreds or thousands of simulations at once. A common deployment model will involve hundreds of servers, where each will execute a few simulations. In this example, each cluster node is running a single application at 80% utilization. By using aggregation to create fewer larger nodes, every four aggregated systems can run another copy of the application, leveraging the underutilized resources and driving an additional 25% utilization.

Summary
The future of High Performance Computing is here and aggregation represents the next logical step forward on this journey for better performance, lower cost, and complexity. It addresses the fundamental limitation of clusters in that they perform poorly on applications that require large shared memory. It also addresses the fundamental barriers many technical computing customers face when adopting clusters due to the lack of appropriate IT skills to install and manage clusters. And it addresses the limitations of the traditional SMP systems of high cost and vendor lock-in.

Aggregation works well for compute-intensive applications (numerical and engineering simulations) and memory-intensive applications (very large modeling and business intelligence).

The benefits of this approach are cluster consolidation and infrastructure optimization (reducing the number of managed entities), improved utilization (reducing data center fragmentation), and physical infrastructure cost reduction (traditional SMP systems, unified I/O) as well as greener computing. The result is fewer systems to manage and a large shared-memory system at industry-standard cluster pricing.

More Stories By Shai Fultheim

As founder and CEO of ScaleMP, Shai Fultheim designed and architected the core technology behind the company, and is now responsible for its strategy and direction. He has more than 15 years of experience in technology and business roles, including a few years on the IT end-user side. Before founding ScaleMP, Shai was CTO of BRM Capital, a first-tier Israeli venture capital firm. Prior to BRM, he was co-founder, CTO, and VP R&D at several technology startups. He has also served in the Israeli Defense Force's entral intelligence unit, where he led a large IT organization. He holds a bachelor of technology and applied science from the Jerusalem College of Technology. Shai has been an active member of several open source initiatives such as Apache, Jakarta Tomcat, Amanda and the Linux kernel.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
DevOps at Cloud Expo, taking place Nov 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 19th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long dev...
Is the ongoing quest for agility in the data center forcing you to evaluate how to be a part of infrastructure automation efforts? As organizations evolve toward bimodal IT operations, they are embracing new service delivery models and leveraging virtualization to increase infrastructure agility. Therefore, the network must evolve in parallel to become equally agile. Read this essential piece of Gartner research for recommendations on achieving greater agility.
SYS-CON Events announced today that 910Telecom will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Housed in the classic Denver Gas & Electric Building, 910 15th St., 910Telecom is a carrier-neutral telecom hotel located in the heart of Denver. Adjacent to CenturyLink, AT&T, and Denver Main, 910Telecom offers connectivity to all major carriers, Internet service providers, Internet backbones and ...
Personalization has long been the holy grail of marketing. Simply stated, communicate the most relevant offer to the right person and you will increase sales. To achieve this, you must understand the individual. Consequently, digital marketers developed many ways to gather and leverage customer information to deliver targeted experiences. In his session at @ThingsExpo, Lou Casal, Founder and Principal Consultant at Practicala, discussed how the Internet of Things (IoT) has accelerated our abil...
With so much going on in this space you could be forgiven for thinking you were always working with yesterday’s technologies. So much change, so quickly. What do you do if you have to build a solution from the ground up that is expected to live in the field for at least 5-10 years? This is the challenge we faced when we looked to refresh our existing 10-year-old custom hardware stack to measure the fullness of trash cans and compactors.
The emerging Internet of Everything creates tremendous new opportunities for customer engagement and business model innovation. However, enterprises must overcome a number of critical challenges to bring these new solutions to market. In his session at @ThingsExpo, Michael Martin, CTO/CIO at nfrastructure, outlined these key challenges and recommended approaches for overcoming them to achieve speed and agility in the design, development and implementation of Internet of Everything solutions wi...
19th Cloud Expo, taking place November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy. Meanwhile, 94% of enterpri...
Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more business becomes digital the more stakeholders are interested in this data including how it relates to business. Some of these people have never used a monitoring tool before. They have a question on their mind like “How is my application doing” but no id...
Pulzze Systems was happy to participate in such a premier event and thankful to be receiving the winning investment and global network support from G-Startup Worldwide. It is an exciting time for Pulzze to showcase the effectiveness of innovative technologies and enable them to make the world smarter and better. The reputable contest is held to identify promising startups around the globe that are assured to change the world through their innovative products and disruptive technologies. There w...
SYS-CON Events announced today Telecom Reseller has been named “Media Sponsor” of SYS-CON's 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Telecom Reseller reports on Unified Communications, UCaaS, BPaaS for enterprise and SMBs. They report extensively on both customer premises based solutions such as IP-PBX as well as cloud based and hosted platforms.
SYS-CON Events announced today that Venafi, the Immune System for the Internet™ and the leading provider of Next Generation Trust Protection, will exhibit at @DevOpsSummit at 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Venafi is the Immune System for the Internet™ that protects the foundation of all cybersecurity – cryptographic keys and digital certificates – so they can’t be misused by bad guys in attacks...
Smart Cities are here to stay, but for their promise to be delivered, the data they produce must not be put in new siloes. In his session at @ThingsExpo, Mathias Herberts, Co-founder and CTO of Cityzen Data, will deep dive into best practices that will ensure a successful smart city journey.
The 19th International Cloud Expo has announced that its Call for Papers is open. Cloud Expo, to be held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, brings together Cloud Computing, Big Data, Internet of Things, DevOps, Digital Transformation, Microservices and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportuni...
In today's uber-connected, consumer-centric, cloud-enabled, insights-driven, multi-device, global world, the focus of solutions has shifted from the product that is sold to the person who is buying the product or service. Enterprises have rebranded their business around the consumers of their products. The buyer is the person and the focus is not on the offering. The person is connected through multiple devices, wearables, at home, on the road, and in multiple locations, sometimes simultaneously...
Internet of @ThingsExpo, taking place November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 19th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The Internet of Things (IoT) is the most profound change in personal and enterprise IT since the creation of the Worldwide Web more than 20 years ago. All major researchers estimate there will be tens of billions devices - comp...
For basic one-to-one voice or video calling solutions, WebRTC has proven to be a very powerful technology. Although WebRTC’s core functionality is to provide secure, real-time p2p media streaming, leveraging native platform features and server-side components brings up new communication capabilities for web and native mobile applications, allowing for advanced multi-user use cases such as video broadcasting, conferencing, and media recording.
Data is the fuel that drives the machine learning algorithmic engines and ultimately provides the business value. In his session at Cloud Expo, Ed Featherston, a director and senior enterprise architect at Collaborative Consulting, will discuss the key considerations around quality, volume, timeliness, and pedigree that must be dealt with in order to properly fuel that engine.
Amazon has gradually rolled out parts of its IoT offerings in the last year, but these are just the tip of the iceberg. In addition to optimizing their back-end AWS offerings, Amazon is laying the ground work to be a major force in IoT – especially in the connected home and office. Amazon is extending its reach by building on its dominant Cloud IoT platform, its Dash Button strategy, recently announced Replenishment Services, the Echo/Alexa voice recognition control platform, the 6-7 strategic...
Akana has announced the availability of version 8 of its API Management solution. The Akana Platform provides an end-to-end API Management solution for designing, implementing, securing, managing, monitoring, and publishing APIs. It is available as a SaaS platform, on-premises, and as a hybrid deployment. Version 8 introduces a lot of new functionality, all aimed at offering customers the richest API Management capabilities in a way that is easier than ever for API and app developers to use.
Cloud computing is being adopted in one form or another by 94% of enterprises today. Tens of billions of new devices are being connected to The Internet of Things. And Big Data is driving this bus. An exponential increase is expected in the amount of information being processed, managed, analyzed, and acted upon by enterprise IT. This amazing is not part of some distant future - it is happening today. One report shows a 650% increase in enterprise data by 2020. Other estimates are even higher....